Voetbal

 

Op een voetbal komt een netwerk van bogen voor, die de oppervlakte van de bal verdelen in een aantal gebieden. Sommige van die gebieden worden door vijf bogen begrensd en zijn dus vijfhoekig van vorm; de rest van de gebieden is zeshoekig. Bij elk knooppunt van het netwerk komen drie gebieden samen; twee daarvan zijn zeshoekig en het derde is vijfhoekig. De vijfhoekige gebieden zijn zwart en de zeshoekige zijn wit. Elk vijfhoekig gebied omgeven wordt door een krans van vijf zeshoekige gebieden. 

Noemen we het aantal knooppunten V ( vertrices), E het aantal bogen (edges) en F het aantal gebieden (faces). Euler zegt dat

    \[V-E+F=2\]

  • Stel x het aantal vijfhoeken en y het aantal zeshoeken. Er zijn dus 5x , maar ook 6y knooppunten ( want in elk hoekpunt komen 2 zeshoeken samen). Bijgevolg is y=\frac{5}{3}x.
  • Alle vijfhoeken en zeshoeken hebben samen 5x + 6y = 5x + 10x= 15x zijden. Bij elke boog van het netwerken vallen twee zijden samen dus E=\frac{15}{2}x.
  • Het aantal gebieden wordt gegeven door F=x+y=\frac{8}{3}x .

De formule van Euler voor veelvlakken wordt nu : 5x-\frac{15}{2}x+ \frac{8}{3}x=2 of x=12

Onze voetbal is dus opgebouwd uit 12 vijfhoeken en 20 zeshoeken, dus 32 zijvlakken; Verder zijn er 60 knooppunten en 90  bogen.

In de wiskunde noemt men deze figuur : de afgeknotte isocaëder.

 

 

 

Ster van David

Iedereen kent wel de driehoek van Pascal met de binomiaalgetallen. In die driehoek kan je mooie verbanden zien: je vindt er de natuurlijke getallen in , de driehoeksgetallen….Gekend is zeker ook de stelling van Stiefel. Minder bekend is de stelling van de Davidster:

In de tekening hierboven zijn de rijen van de driehoek van Pascal als kolommen weergegeven. De  grootste gemene delers van de getallen op de hoekpunten van de gegeven driehoeken zijn gelijk: De grootste gemene deler van \binom{n-1}{k-1},\binom{n}{k+1},\binom{n+1}{k} is gelijk aan de grootste gemene deler van \binom{n-1}{k-},\binom{n}{k-1},\binom{n+1}{k+1} . Dit verband werd in 1972 ontdekt door de Amerikaanse wiskundige Henry Gould.

Bovendien geldt er dat het product van de getallen op de hoekpunten van de driehoeken gelijk is

Een voorbeeld:

 

Kwadraten in de driehoek van Pascal

In de driehoek van Pascal kan je veel verbanden vinden. Vandaag gaan we op zoek naar kwadraten.

  • Kijk naar de derde kolom van de driehoeksgetallen 1,3,6,10,… en tel daar de elementen twee per twee op en je vindt de rij 4,9,16,25,… Hoe kan je dit verklaren?  De som van de elementen is altijd van de vorm

        \[\binom{n}{2}+\binom{n+1}{2}\]


    Uitrekenen geeft \frac{1}{2}n(n-1)+\frac{1}{2}n(n+1)=n^2.
  • Kijk naar de vierde kolom 1,4,10,20,35,56,…en bereken het verschil van de derde en de eerste, de vierde en de tweede enz. , dan vorm je de rij 9,16,25,… Verklaring?

        \[\binom{n+2}{3}-\binom{n}{3}\]

    Uitrekenen met de formule van Stiffel geeft: \Big(\binom{n+2}{3}-\binom{n+1}{3}\Big)+\Big(\binom{n+1}{3}-\binom{n}{3}\Big)=\binom{n+1}{2}+\binom{n}{2}=n^2.

Pariteit van een permutatie

Elke permutatie kan geschreven worden als het product ( samenstelling) van transposities. Een transpositie of omwisseling is een twee-cykel, zoals bijvoorbeeld (12).

Dit product kan op verschillende manieren tot stand komen, maar het is wel zo dat het aantal transposities dat je nodig hebt, steeds hetzelfde is. Als dat aantal even is , spreken we van een even permutatie. Als het aantal oneven is , spreken we van een oneven permutatie.  Dit noem je de pariteit van de permutatie

Een voorbeeldje van een oneven permutatie:

    \[(1234) =(14)(13)(12)\]

    \[(1234)=(12)(23)(34)\]

Let op de volgorde! Zoals bij de samenstelling , werken we van achter na voor. Nog een paar voorbeelden met afbeelding:

 

is een even permutatie, want de permutatie is te schrijven als (16)(15)(13)(28)(27)(24).

is een oneven permutatie, want de permutatie is te schrijven als (14)(32)(35)

 

Stelling van Van der Waerden

In de wiskunde zijn er verschillende  stellingen die elk op hun eigen manier zeggen dat totale wanorde onmogelijk is.  Zo hebben we bijvoorbeeld het vermoeden van Baudet: Als je de hele verzameling \mathbb{N} in twee verzamelingen A en B verdeelt, is het dan noodzakelijk zo dat (ten minste) één van die twee verzamelingen willekeurig lange rekenkundige rijtjes bevat?

De Nederlandse wiskundige Van der Waerden publiceerde in 1927 een bewijs. In het artikel staat een algemenere bewering :  voor elk paar positieve gehele getallen r en k is er een getal N zodanig dat indien men {1, 2, …, N }  in r  klassen verdeelt, er minstens een klasse is die een rekenkundige rij van lengte k bevat. Het kleinste getal N waarvoor dit geldt noemt men het Van der Waerden-getal W(r,k).

Zo is bijvoorbeeld W(2,3) =  9. Een kleinere waarde is er niet want {{1,2,4,5},{3,4,6,8}} is een verdeling van {1,2,3,4,5,6,7,8} in twee delen die geen rekenkundige rij met 3 elementen bevat. In onderstaande tekening kleur je de getallen van 1 tot en met 9 in 2 kleuren; je ziet dat je steeds een rekenkundige rij van drie elementen krijgt in eenzelfde kleur.