We weten dat n! = n.(n-1)…1. We willen nu onderzoeken wat de exponent is van een priemgetal p in de ontbinding in factoren van n!
- Schrijf n in het p-tallig stelsel:
.
- Elk veelvoud van p tussen 1 en n levert 1 factor p in de ontbinding van n!. Zo zijn er
, want
.
- Elk veelvoud van
tussen 1 en n levert een extra factor p in de ontbinding van n!. Zo zijn er
, want ![Rendered by QuickLaTeX.com \dfrac{n_1}{p}+\dfrac{n_0}{p^2}<1](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-12b3a7d2a2737e06c8d2092088e70e39_l3.png)
- Noteer met
de exponent van p in de ontbinding van n!.
- Dan is:
![Rendered by QuickLaTeX.com v_p(n!)=( n_lp^{n-1}+n_{l-1}p^{l-2}+\cdots+n_1)+(n_lp^{n-2}+n_{l-1}p^{l-3}+\cdots+n_2)+\cdots +(n_lp+n_{l-1})+n_l](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-c97f2ab845353dd31a5749dfcc989f4f_l3.png)
- Herschikking geeft:
![Rendered by QuickLaTeX.com v_p(n!)=n_l(p^{n-1}+p^{n-2}+\cdots+p+1)+n_{l-1}(p^{l-2}+\cdots+1)+\cdots+n_2(p+1)+n_1](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-2265c862f790341876add4e976cb0964_l3.png)
- Dus
.
- Noteer
.
- Bijgevolg is
.
![Rendered by QuickLaTeX.com n=n_lp^l+n_{n-1}p^{l-1}+\cdots+n_1p+n_0](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-414956627ecb123b05b0a0cff6531d23_l3.png)
![Rendered by QuickLaTeX.com \lfloor \dfrac{n}{p} \rfloor= n_lp^{n-1}+n_{l-1}p^{l-2}+\cdots+n_1](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-aadbd53b4908a0e164797e1d9bbbddcf_l3.png)
![Rendered by QuickLaTeX.com \dfrac{n_0}{p}<1](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-b28684fd6f145a9b91d61b5d608e2646_l3.png)
![Rendered by QuickLaTeX.com p^2](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-ac0f6922d33698284fa42072c22742f3_l3.png)
![Rendered by QuickLaTeX.com \lfloor \dfrac{n}{p^2} \rfloor= n_lp^{n-2}+n_{l-1}p^{l-3}+\cdots+n_2](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-4d50cc44b25a44ac03052d6a996f46ec_l3.png)
![Rendered by QuickLaTeX.com \dfrac{n_1}{p}+\dfrac{n_0}{p^2}<1](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-12b3a7d2a2737e06c8d2092088e70e39_l3.png)
![Rendered by QuickLaTeX.com v_p(n!)](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-67e26deb439ad29d2b9a5cd94b9cdf83_l3.png)
![Rendered by QuickLaTeX.com v_p(n!)=( n_lp^{n-1}+n_{l-1}p^{l-2}+\cdots+n_1)+(n_lp^{n-2}+n_{l-1}p^{l-3}+\cdots+n_2)+\cdots +(n_lp+n_{l-1})+n_l](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-c97f2ab845353dd31a5749dfcc989f4f_l3.png)
![Rendered by QuickLaTeX.com v_p(n!)=n_l(p^{n-1}+p^{n-2}+\cdots+p+1)+n_{l-1}(p^{l-2}+\cdots+1)+\cdots+n_2(p+1)+n_1](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-2265c862f790341876add4e976cb0964_l3.png)
![Rendered by QuickLaTeX.com v_p(n!)=n_l\dfrac{p^n-1}{p-1}+n_{l-1}\dfrac{p^{n-1}-1}{p-1}+\cdots+n_2\dfrac{p^2-1}{p-1}+n_1](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-8ba5bc78050ac6d1c5cb2d4f9612c0a2_l3.png)
![Rendered by QuickLaTeX.com n_l+n_{l-1}+\cdots+n_1+n_0=s_p(n)](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-a336da0c1eb997fdc2b9b1fad87170ad_l3.png)
![Rendered by QuickLaTeX.com v_p(n!)=\dfrac{1}{p-1}(n-s_p(n))](http://www.wiskundemagie.be/wp-content/ql-cache/quicklatex.com-e11761d3bad19391e46cebd9fc426a10_l3.png)
Voorbeeld :
- 12 = 1100 in het binair talstelsel, dus is
.
- 12 = 110 in het drietallig stelsel, dus is
.
- 12 = 22 in het vijftallig stelsel , dus is
.
- 12 = 15 in het zeventallig stelsel , dus is
.
- 12 = 11 in het elftallig stelsel , dus is
.