Stelling van Wilson

De kleine stelling van Fermat zegt ons dat voor een priemgetal p geldt dat a^p \equiv a \mod{p}. Maar dan zijn 1,2, … , p – 1 allemaal nulpunten van de veelterm X^{p-1}-1 in de verzameling \mathbb{Z}_p[X] en dus kunnen we, omdat er geen nuldelers zijn, volgende ontbinding neerschrijven: X^{p-1}-1 = (X-1)(X-2) \cdots (X-(p-1)).
Door hierin X te vervangen door 0, vinden we een deel van volgende stelling:

    \[p \text{ is priem  als en slechts als } (p-1)! \equiv -1 \mod{p}\]

Dit resultaat staat bekend als de stelling van Wilson, naar de Engelse wiskundige John Wilson (1741-1793). Nochtans komt dit resultaat een eerste keer voor bij Abu Ali al-Hasan ibn al-Haytham (965-1040)

Bovendien had Wilson geen bewijs van de stelling. Het was Lagrange die in 1771 het eerste bewijs ervan formuleerde.

Het is ook duidelijk dat als n een samengesteld getal is, groter dan 4,  dat  (n-1)! \equiv 0 \mod{n}.

Een algemene vorm is voor ieder oneven priemgetal p en voor ieder positief geheel getal k kleiner dan p:

    \[(k-1)!(p-k)! \equiv (-1)^k \mod{p}\]

Deze veralgemening danken we aan C.F.Gauss