Topologie

Topologie is een veralgemening van de meetkunde. Het woord is afgeleid   van het Grieks topos(plaats) en logos (studie). Het is een onderdeel van de wiskunde dat zich bezighoudt met eigenschappen in de n-dimensionele ruimte , die bewaard blijven bij continue vervorming (de objecten mogen niet worden gescheurd of geplakt). De term ’topologie’ werd geïntroduceerd in 1847 door de Duitse wiskundige John Benedict Listing ( 1808-1892) in zijn werk Vorstudien zur Topologie . Listing was een leerling van Carl Friedrich Gauss.

In de beginperiode noemde men ‘ deze wiskunde’ : analysis situs, analyse van de positie. Rubbermeetkunde is een betere omschrijving van wat topologie eigenlijk betekent .

In topologie beschouwt men twee objecten als hetzelfde (homeomorf) als de ene continu vervormd kan worden tot de andere: uitrekken zonder  echter te scheuren of verschillende delen samen te plakken.

In de praktijk zijn continue vervormingen echter moeilijk te beschrijven. Er bestaat een andere methode om te zien wanneer twee objecten niet-homeomorf zijn. Hierbij maakt men gebruik van de Euler karakteristiek of de Poincaré-Euler karakteristiek: een geheel getal dat de  essentie van de vorm van een topologische ruimte weergeeft. 

De Eulerkarakteristiek wordt genoteerd door \chi. Noteer met h het aantal hoekpunten, met r het aantal ribben en met v het aantal zijvlakken van een figuur.

  • Voor figuren zoals de cirkel is \chi= h-r.
  • Voor figuren zoals een bol is \chi=h-r+v.

Voor een kubus ( en elk ander Platonisch veelvlak ) is \chi=2, want een kubus heeft 8 hoekpunten, 12 ribben en 6 zijvlakken: 8-12+6=2.

Voor de drievoudige torus kan men aantonen dat \chi=-4.

 

Het berekenen van de Euler karakteristiek gebeurt via triangulatie, waarop we hier niet verder ingaan. Belangrijk is om te weten dat, als figuren homeomorf zijn, hun Euler karakteristieken dezelfde zijn of door contra positie: als de Euler getallen verschillend zijn , dan zijn de figuren niet homeomorf.

 

De Möbius band

 

Laten we het eens hebben over deze ‘rare’ figuur.

Neem  een rechthoekige strook papier:

Door de uiteinden aan een te plakken ( uiteinde A aan uiteinde A) krijgen we een cilinder:

Deze cilinder heeft twee randen: een bovenrand en een onderrand en verder een binnen oppervlak en een buiten oppervlak. Deze worden als aparte objecten bekeken ( zie stippellijn en volle lijn). Van de binnenzijde kom je naar de buitenzijde via een rand.

Je kan de strook echter ook op een andere manier aan elkaar lijmen ( uiteinde A aan uiteinde B):

Er is nu geen boven of onderkant. Deze figuur heeft maar 1 kant en 1 zijde. We noemen deze figuur de Möbiusband naar de Duitse wiskundige August Möbius(1790-1868).

Het bestuderen van dergelijke figuren maakt deel uit van de topologie, een tak van de wiskunde die zich bezighoudt met eigenschappen  die bewaard blijven bij continue vervorming (de objecten mogen niet worden gescheurd of geplakt). Anders dan de meetkunde, houdt de topologie zich niet bezig met metrische eigenschappen zoals de afstand tussen punten, maar met eigenschappen die beschrijven hoe een ruimte is samengesteld, zoals samenhang en oriëntatie.