Third International Olympiad, 1961

1961/1.

Solve the system of equations:

$$x + y + z = a$$

$$x^{2} + y^{2} + z^{2} = b^{2}$$

$$xy = z^{2}$$

where a and b are constants. Give the conditions that a and b must satisfy so that x, y, z (the solutions of the system) are distinct positive numbers.

1961/2.

Let a, b, c be the sides of a triangle, and T its area. Prove: $a^2+b^2+c^2 \ge 4\sqrt{3}T$. In what case does equality hold?

1961/3.

Solve the equation $\cos^n x - \sin^n x = 1$, where *n* is a natural number.

1961/4.

Consider triangle $P_1P_2P_3$ and a point P within the triangle. Lines P_1P , P_2P , P_3P intersect the opposite sides in points Q_1, Q_2, Q_3 respectively. Prove that, of the numbers

$$\frac{P_1P}{PQ_1}, \frac{P_2P}{PQ_2}, \frac{P_3P}{PQ_3}$$

at least one is ≤ 2 and at least one is ≥ 2 .

1961/5.

Construct triangle ABC if AC = b, AB = c and $\angle AMB = \omega$, where M is the midpoint of segment BC and $\omega < 90^{\circ}$. Prove that a solution exists if and only if

$$b\tan\frac{\omega}{2} \le c < b.$$

In what case does the equality hold?

1961/6.

Consider a plane ε and three non-collinear points A, B, C on the same side of ε ; suppose the plane determined by these three points is not parallel to ε . In plane a take three arbitrary points A', B', C'. Let L, M, N be the midpoints of segments AA', BB', CC'; let G be the centroid of triangle LMN. (We will not consider positions of the points A', B', C' such that the points L, M, N do not form a triangle.) What is the locus of point G as A', B', C' range independently over the plane ε ?