Third International Olympiad, 1961

1961/1.
Solve the system of equations:

$$
\begin{aligned}
x+y+z & =a \\
x^{2}+y^{2}+z^{2} & =b^{2} \\
x y & =z^{2}
\end{aligned}
$$

where a and b are constants. Give the conditions that a and b must satisfy so that x, y, z (the solutions of the system) are distinct positive numbers.

1961/2.
Let a, b, c be the sides of a triangle, and T its area. Prove: $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} T$. In what case does equality hold?

1961/3.

Solve the equation $\cos ^{n} x-\sin ^{n} x=1$, where n is a natural number.
1961/4.
Consider triangle $P_{1} P_{2} P_{3}$ and a point P within the triangle. Lines $P_{1} P, P_{2} P, P_{3} P$ intersect the opposite sides in points Q_{1}, Q_{2}, Q_{3} respectively. Prove that, of the numbers

$$
\frac{P_{1} P}{P Q_{1}}, \frac{P_{2} P}{P Q_{2}}, \frac{P_{3} P}{P Q_{3}}
$$

at least one is ≤ 2 and at least one is ≥ 2.
1961/5.
Construct triangle $A B C$ if $A C=b, A B=c$ and $\angle A M B=\omega$, where M is the midpoint of segment $B C$ and $\omega<90^{\circ}$. Prove that a solution exists if and only if

$$
b \tan \frac{\omega}{2} \leq c<b
$$

In what case does the equality hold?

1961/6.

Consider a plane ε and three non-collinear points A, B, C on the same side of ε; suppose the plane determined by these three points is not parallel to ε. In plane a take three arbitrary points $A^{\prime}, B^{\prime}, C^{\prime}$. Let L, M, N be the midpoints of segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$; let G be the centroid of triangle $L M N$. (We will not consider positions of the points $A^{\prime}, B^{\prime}, C^{\prime}$ such that the points L, M, N do not form a triangle.) What is the locus of point G as $A^{\prime}, B^{\prime}, C^{\prime}$ range independently over the plane ε ?

