Betegelingen van het vlak

De kunst van het betegelen is waarschijnlijk al zo oud als de beschaving zelf. Moorse gebouwen, zoals het Alhambra zijn overvloedig versierd met kleurrijke tegels in alle mogelijke vormen.

De wetenschappelijke benadering van betegelingen is echter nauwelijks 100 jaar oud. Op 1 uitzondering na, want reeds in 1619 schreef Johann Kepler (1571-1630) over dit onderwerp.

In zijn werk: Harmonice Mundi, komen betegelingen uitgebreid aan bod, zoals blijkt uit volgende afbeeldingen uit zijn boek.

Het werk maakt op veel plaatsen de indruk een religieus traktaat te zijn. Kepler uitgangspositie is religieus, metafysisch, maar zijn grote kracht is dat hij minutieus al zijn bespiegelingen controleert en zich door de feiten laat overtuigen. Volgens het idee van Kepler is de kosmos door God harmonisch geschapen en heeft de mens voor deze harmonie een ingeschapen gevoel. De harmonie zit in de getalsmatige verhoudingen. Het is een harmonie van getallen. 

Vlinderstelling

 

 


Neem een willekeurige koorde PQ met midden M. Trek door M twee willekeurige koorden AB en CD. Verbind A met D en C met B. AD en BC snijden de oorspronkelijke koorde PQ respectievelijk in X en Y. De vlinderstelling zegt nu dat M ook het midden is van XY. 

Dit probleem werd het eerst gesteld door William Wallace (Schots wiskundige 1768-1843)  in The Gentleman’s Mathematical Companion (1803). In 1804 werden er drie oplossingen ingezonden. 

Waarom vlinderstelling of butterfly theorema?