Opgave 34: Een integraal…

Bereken A=\int_0^{\frac{\pi}{4}} ln(1+tan x) dx

  • Gewone methoden werken hier niet.
  • Als een functie f gedefinieerd is op \left[a,b\right] dan kan je de functie spiegelen rond de middelloodlijn van dit lijnstuk en bekom je de functie g(x)=f(a+b-x).
  • Uit de definitie van de bepaalde integraal volgt dan dat \int_a^bf(x) dx=\int_a^b g(x) dx.
  • Passen we dit toe op de opgave , dan krijgen we: A=\int _0^{\frac{\pi}{4}} ln(1+tan(\frac{\pi}{4}-x)) dx.
  • Nu is tan(\frac{\pi}{4}-x)=\frac{1-tan x}{1+tan x}.
  • Zodat A=\int _0^{\frac{\pi}{4}} ln\Big( \frac{2}{1+ tan x}\Big) dx.
  • Gebruikmakend van de rekenregels voor logaritmen, volgt hieruit dat A=\int _0^{\frac{\pi}{4}} ln(2) dx -A.
  • Bijgevolg is A=\frac{\pi}{8} ln(2).