Nog 2 opgaven over priemgetallen

De som van twee tweelingpriemen, groter dan 3, is deelbaar door 12.

Antwoord
  • Veronderstel dus dat p>3 en dat  p en p+2 allebei priem zijn.
  • Hun som is dan S=2(p+1).
  • Omdat p oneven is , is p+1 even en is S dus zeker al deelbaar door 4.
  • p kan geen drievoud zijn. Het kan evenmin van de vorm 3k+1 zijn , want anders zou p+2=3(k+1) en dus niet priem zijn.
  • Bijgevolg is p van de vorm 3k-1 en dan is S=6k. Dus is S deelbaar door 3 en samen met een vorig resultaat is S dus deelbaar door 12.

Veronderstel dat p een priemgetal is en dat allebei de oplossingen van x^2+px-444p=0 gehele getallen zijn, zoek dan de mogelijke waarden van p.

 

Antwoord

 

  • De discriminant van de gegeven vergelijking is p^2+4*444p.
  • Als de vergelijking gehele oplossingen moet hebben moet  dit zeker een volkomen kwadraat zijn , dus is er  een gehele q met q^2=p^2+4*444p=p(p+4*444).
  • Vermits hierboven p een deler is van het rechterlid en omdat p priem is moet p ook een deler zijn van q en dan kunnen we schrijven dat q=p.r, met r een geheel  getal.
  • Ingevuld vinden we zo dat p(p+4*444)=p^2r^2 of pr^2=p+4*444.
  • Hieruit volgt dat p een deler moet zijn van 4*444. De mogelijke waarden voor p zijn dan 2, 3 en 37. 
  • We kunnen p = 2 of  p = 3 in de oorspronkelijke vergelijking en we zien dat er dan geen gehele oplossingen zijn. Wel bij p=37.
  • Er is dus slechts 1 oplossing, namelijk p = 37.

2 opgaven over priemgetallen

Als p,q en r priemgetallen zijn groter dan 3, bewijs dan dat p^2+q^2+r^2 geen priemgetal is.

Antwoord
  • Elk priemgetal x is van de vorm 3k\pm 1.
  • Dan is x^2 van de vorm 3l+1
  • De som van 3 priemgetallen is dan : p^2+q^2+r^2=3l+1+3n+1+3m+1=3(l+m+n+1).
  • Dus is p^2+q^2+r^2  niet priem.

Als 2^k+1 een priemgetal is, dan is k een macht van 2. Bewijs.

Antwoord
  • Stel dat k geen macht van 2 is, dan is k=n.2^q, waarbij n zeker oneven is.
  • Nu is A= 2^k+1=2^{n.2^q}=\Big(2^{(2^q)}\Big)^n+1.
  • Algemeen geldt er dat , bij oneven n, x^n+1 steeds deelbaar is door x+1.
  • Bijgevolg is A deelbaar door 2^{(2^q)}+1 en hebben we een tegenspraak.
  • Dus is k wel een macht van 2.