Ongelijkheid van Jensen

Voor elke functie f waarvan de grafiek ‘hol’ naar onder is , of dus convex (d.w.z dat het verbindingstuk van twee punten van de grafiek altijd boven de grafiek ligt ) geldt volgende ongelijkheid:

    \[f(\dfrac{a_1+a_2+\cdots+\a_n}{n} )\leq \dfrac{f(a_1)+f(a_2)+\cdots+f(a_n)}{n}\]

Deze ongelijkheid staat bekend als de ongelijkheid van Jensen, naar de Deense wiskundige Johan Willem Ludwig Valdemar Jensen (1859-1925).

Uiteraard is er een analoge formule voor concave functies.

Voorbeeld: Als a,b en c positieve hoeken zijn met een som gelijk aan \frac{\pi}{2}, dan is \tan a+ \tan b+\tan c \geq \sqrt{3}.

Tussen 0 enĀ \frac{\pi}{2} is de tangensfunctie convex, dus geldt er volgens Jensen dat \tan (\dfrac{a+b+c}{3}) \leq \frac{1}{3}( \tan a+\tan b+\tan c). Hieruit volgt dat \frac{1}{3}( \tan a+\tan b+\tan c) \geq \tan(\frac{\pi}{6})=\frac{\sqrt{3}}{3}. Vermenigvuldigen met 3 geeft het gevraagde antwoord.