De spiraal van Theodorus

De spiraal van Theodorus wordt opgebouwd uit een reeks rechthoekige driehoeken. Het begint met een gelijkbenige rechthoekige driehoek waarvan de beide rechthoekszijden lengte 1 hebben. Vervolgens wordt een nieuwe rechthoekige driehoek toegevoegd, waarbij één rechthoekszijde de vorige schuine zijde is en de andere rechthoekszijde terug lengte 1 heeft. Dit proces wordt herhaald. De figuur die zo ontstaat noemt men de spiraal van Theodorus, genoemd naar de Griekse wiskundige Theodorus van Cyrene die leefde in de 5de eeuw voor Christus.

Hij hield op bij de driehoek met hypotenusa \sqrt{17} , vermoedelijk omdat dat de laatste is die niet een vorige driehoek overlapt.

Het is duidelijk dat via de stellig van Pythagoras  de lengten van de  schuine zijden van deze driehoeken de vierkantswortels zijn van opeenvolgende natuurlijke getallen. Vandaar dat men deze spiraal ook wel eens wortelspiraal noemt.

Bewijzen met verhaaltjes

Deze bewijstechniek bestaat er in ‘een verhaaltje te vertellen. 

Stel ik wil volgende formule “bewijzen”:  voor n\geq p\geq 2

    \[p(p-1)\binom{n}{p}=n(n-1)\binom{n-2}{p-2}\]

Je zou natuurlijk, gebruikmakend van de definitie van de binomiaalgetallen, beide leden kunnen uitrekenen, en vaststellen dat beide resultaten hetzelfde zijn. Maar proberen we dit eens anders in te kleden. Je hebt binnen een politieke partij n kaderleden, waaruit je een dagelijks bestuur van p personen moet kiezen, met hierin een voorzitter en een ondervoorzitter. Dit kan je doen op twee manieren :

  • Kies eerst p personen. Dit kan op \binom{n}{p}. Kies hier uit een voorzitter: p mogelijkheden. Kies dan een ondervoorzitter: p – 1 mogelijkheden. Samen geeft dit dus, als aantal mogelijkheden:

        \[p(p-1)\binom{n}{p}\]

  • Maar je kan eerst een voorzitter kiezen uit de n kaderleden. Dit kan je op n mogelijkheden. Kies vervolgens een ondervoorzitter: n – 1 mogelijkheden. Kies tenslotte nog p-2 ander personen om je dagelijks bestuur te vervolledigen. dit kan op \binom{n-2}{p-2} manieren. Zo krijg je in het totaal als mogelijkheden:

        \[n(n-1)\binom{n-2}{p-2}\]

Hiermee is de gevraagde formule bewezen!

Nootje 54

Bereken de oppervlakte van volgende vierhoek:

Antwoord

  • We vervolledigen deze vierhoek tot een driehoek.

  • De tophoek is 30^\circ en via de definitie van sinus en tangens kan je de zijden berekenen in de bovenste kleine driehoek:  2 en \sqrt{3}.
  • In de grote driehoek kan je via de definitie van tangens de basis AD berekenen: \frac{4}{\sqrt{3}}.
  • De oppervlakte van de vierhoek ABCD is het verschil van de oppervlaktes van de grote en de kleine driehoek : \frac{8}{\sqrt{3}}-\frac{\sqrt{3}}{2}=\frac{13\sqrt{3}}{6}