Majorisatie ongelijkheid

Neem 2 geordende n-tallen x_1,\cots,x_n en y_1,\cdots,y_n. Als x_1 \geq x_2\geq \cdots \geq x_n,
y_1\geq y_2\geq \cdots \geq y_n,
x_1\geq y_1,
x_1+x_2\geq y_1+y_2, …,
x_1+x_2+\cdots+x_{n-1}\geq y_1+y_2+\cdots+y_{n-1} en x_1+\cdots+x_n=y_1+\cdots+y_n, dan zeggen we dat het n-tal (x_1,\cdots,x_n) het n-tal (y_1,\cdots,y_n) majorizeert en we noteren (x_1,\cdots,x_n)>(y_1,\cdots,y_n).

Dit gaan we gebruiken in volgende stelling over ongelijkheden:

Als f een convexe functie is op een interval I en (x_1,\cdots,x_n)>(y_1,\cdots,y_n) met x_i,y_i \in I, dan zal

    \[f(x_1)+\cdots+f(x_n)\geq f(y_1)+\cdots+f(y_n)\]

  • Als f strikt convex is krijg je een gelijkheid als en slechts als \forall i: x_i=y_i.
  • Er is een gelijkaardig resultaat voor concave functies, als je de ongelijkheidstekens omdraait.
  • Deze stelling is een veralgemening van de ongelijkheid van Jensen, waarbij (x_1,\cdots,x_n)> (x,\cdots,x). Hierbij is x het rekenkundig gemiddelde van de getallen x_i.

Een voorbeeld:

Vind de maximum waarde van a^{12}+b^{12}+c^{12} als -1\leq a,b,c \leq 1 en a+b+c=-\frac{1}{2}.

  • De functie f(x)=x^{12} is convex op \left[-1,1\right], want f''(x)=132x^{10}\geq 0 op \left[-1,1\right].
  • Veronderstel 1\geq a \geq b\geq c\geq -1.
  • Dan is (1,-\frac{1}{2},-1)>(a,b,c), want eerst en vooral is 1\geq a. Verder is -c\leq 1, dus is 1-\frac{1}{2} \geq -c-\frac{1}{2}=a+b.
  • Volgens de majorisatie ongelijkheid is dan a^{12}+b^{12}+c^{12} \leq f(1)+f(-\frac{1}{2})+f(-1)=2+\frac{1}{2^{12}}.
  • De maximumwaarde van 2+\frac{1}{2^{12}} wordt bereikt voor a=1, b=-\frac{1}{2} en c=-1.

Nog een goniometrische ongelijkheid

In een driehoek met hoeken \alpha,\beta en \gamma geldt:

    \[\cot \alpha.\cot \beta.\cot \gamma \leq \frac{\sqrt{3}}{9}\]

  • Als één van de hoeken groter is dan 90^{\circ} dan is de cotangens ervan negatief en klopt de eigenschap zeker.
  • Veronderstel dus dat alle hoeken scherp zijn, dan is de tangens functie convex en volgt uit de stelling van Jensen dat:  \tan \alpha +\tan \beta +\tan \gamma \geq 3\tan(\frac{\alpha+\beta+\gamma}{3})=3\sqrt{3}.
  • Men kan eenvoudig controleren dat \tan \alpha +\tan \beta +\tan \gamma =\tan \alpha .\tan \beta .\tan \gamma en dus is  \tan \alpha .\tan \beta .\tan \gamma \geq 3\sqrt{3}.
  • Als we het omgekeerde nemen vinden we dat  \cot \alpha .\cot \beta .\cot \gamma \leq \frac{1}{ 3\sqrt{3}}=\frac{\sqrt{3}}{9}.

Ongelijkheid met sinussen

Sommige ongelijkheden kunnen zeer elegant worden opgelost door gebruik te maken van de ongelijkheid van Jensen. Voor concave functies ( bol , tweede afgeleide negatief) wordt dit :

    \[\frac{f(x)+f(y)+f(z)}{3} \leq f\Big( \frac{x+y+z}{3}\Big)\]

In een driehoek met hoeken \alpha,\beta en \gamma geldt :

    \[\sin \alpha +\sin \beta +\sin \gamma \leq \ \frac{3\sqrt{3}}{2}\]

Omdat \alpha,\beta,\gamma hoeken zijn van een driehoek zijn \alpha,\beta,\gamma elementen van [0,\pi ]. De sinusfunctie is concaaf op dit interval, want \sin''(x)=-\sin x \leq 0 in [0,\pi ]. Dus is, volgens Jensen: \frac{\sin \alpha+\sin \beta +\sin \gamma}{3}\leq \sin \frac{\alpha+\beta+\gamma}{3}=\sin \frac{\pi}{3} =\frac{\sqrt{3}}{2}.

Dus is \sin \alpha+\sin \beta +\sin \gamma} \leq \frac{3\sqrt{3}}{2}.

Ongelijkheid van Jensen

Voor elke functie f waarvan de grafiek ‘hol’ naar onder is , of dus convex (d.w.z dat het verbindingstuk van twee punten van de grafiek altijd boven de grafiek ligt ) geldt volgende ongelijkheid:

    \[f(\dfrac{a_1+a_2+\cdots+\a_n}{n} )\leq \dfrac{f(a_1)+f(a_2)+\cdots+f(a_n)}{n}\]

Deze ongelijkheid staat bekend als de ongelijkheid van Jensen, naar de Deense wiskundige Johan Willem Ludwig Valdemar Jensen (1859-1925).

Uiteraard is er een analoge formule voor concave functies.

Voorbeeld: Als a,b en c positieve hoeken zijn met een som gelijk aan \frac{\pi}{2}, dan is \tan a+ \tan b+\tan c \geq \sqrt{3}.

Tussen 0 en \frac{\pi}{2} is de tangensfunctie convex, dus geldt er volgens Jensen dat \tan (\dfrac{a+b+c}{3}) \leq \frac{1}{3}( \tan a+\tan b+\tan c). Hieruit volgt dat \frac{1}{3}( \tan a+\tan b+\tan c) \geq \tan(\frac{\pi}{6})=\frac{\sqrt{3}}{3}. Vermenigvuldigen met 3 geeft het gevraagde antwoord.