Differentie veeltermen

We beschrijven een manier om de waarden van een veelterm P(x) te berekenen als de waarden in opeenvolgende natuurlijke getallen gegeven zijn. 

De (eerste) differentie van P(x) is:

    \[D_1(x)=P(x+1)-P(x)\]

De k-de differentie wordt dan gedefinieerd als:

    \[D_k(x)=D_1(D_{k-1}(x))\]

Als de graad van P(x) gelijk is aan n, dan formuleren we volgende eigenschappen:

  • De graad van D_1(x) is n-1.
  • De graad van D_k(x) is n-k.
  • Via inductie vinden we

        \[D_k(x)=\sum_{i=0}^k\binom{k}{i}P(x+i)\]

  • D_n(x) is constant en D_{n+1}(x)=0.
  • De waarde van de constante D_n(x) is n! keer de co\”efficiënt\”ent van x^n in P(x).
  • P(x+n+i)=\sum_(I=0}^n(-1)^{k-i}\binom{n+1}{i}p(x+i).

Veronderstel dat f een veelterm is van graad 2 en dat f(1)=4,f(2)=3,f(3)=4,f(4)=7 en f(5)=12 , bereken dan f(6). We zouden een voorschrift voor f kunnen opstellen via interpolatie of door 3 van de gegevens in te vullen in f(x)=ax^2+bx+c en dan het stelsel van 3 vergelijkingen met 3 onbekenden op te lossen. Maar .. laten we  eens de differenties berekenen:

Omdat we weten dat D_2(x) constant is kunnen we de tabel zelf aanvullen:

en vinden we dat f(6)=19.

Een ander voorbeeld: zo is er geen veelterm P(n) waarvoor geldt dat P(n)=2^n voor elke positief natuurlijk getal n. Want : D_1(n)=2^{n+1}-2^n=2^n=P(n).  Dus wordt geen enkele differentie konstant en bestaat er geen veelterm met de gevraagde voorwaarde.