Zelf beschrijvende getallen

Een zelf beschrijvend getal is een natuurlijk getal waarvan het eerste cijfer weergeeft hoeveel nullen er in het getal zijn. Het tweede cijfer geeft aan hoeveel enen er aanwezig zijn; Het derde cijfer telt het aantal tweeën enzoverder. Zo is 2020 een zelf beschrijvend getal , want er zijn 2 nullen, geen 1, twee tweeën en geen 3.

Enkele eigenschappen: 

  • Er is minstens één 0 in een zelf beschrijvend getal. Het begincijfer van een getal is immers steeds verschillend van 0.
  • In ons talstelsel is het grootst mogelijk zelf beschrijvend getal, een getal van 10 cijfers.
  • Het kleinste zelf beschrijvend getal is 1210.
  • Het grootste is 6210001000.
  • Bij zelf beschrijvende getallen met maximale lengte ( 10 dus), is de som van de cijfers altijd 10. Logisch want die cijfersom geeft weer hoeveel cijfers er in het getal zijn.

De gulden snede en de rij van Fibonacci

We kennen allemaal de gulden snede. Bij de gulden snede verhoudt het grootste van de twee delen van een lijnstuk zich tot het kleinste, zoals het gehele lijnstuk zich verhoudt tot het grootste. 

Maar er is ook een verband tussen \varphi en de rij van Fibonacci. Noteren we het n-de getal in deze rij door F(n).

  • Als we in bovenstaande uitdrukking \frac{a}{b} vervangen door \varphi, dan vinden we dat \varphi^2=\varphi+1.
  • Maar dat is \varphi^3=\varphi^2+\varphi=2\varphi+1.
  • Dus \varphi^4=2\varphi^2+\varphi=3\varphi+2.
  • Algemeen kan men dan stellen dat :

        \[\varphi^n=F(n)\varphi+F(n-1)\]

Chebychev metriek

We weten allemaal hoe we de afstand meten tussen twee punten. Hierbij verzwijgen we eigenlijk dat het gaat over de euclidische afstand. Er zijn ook andere manieren om een afstand te berekenen.

Zo heb je bijvoorbeeld de Chebychev afstand ( naar de Russische wiskundige Pafnoeti Chebychev(1821-1894)) en de taximetrische afstand. Neem twee punten A(x_1,x_2,...,x_n) en b(y_1,y_2,...,y_n), dan is de Chebychev afstand het maximum van de getallen |x_i-y_i| en de taximetrische afstand is de som van al die getallen.

Zo is de Chebychev afstand tussen twee velden op een schaakbord het minimum aantal zetten dat de koning nodig heeft om zich van het ene punt naar het andere punt te begeven.

We geven tot slot nog een afbeelding van de eenheidscirkel in de drie afstanden: Euclidisch, Chebychev en taximetrisch: 

 

 

 

Som gelijk aan product

Noteer alle niet-triviale n-de machtswortels uit 1 door e_i:i=2....n. Stel e_1=1. Vorm nu de uitdrukkingen a_i=1-e_i en bewijs dat

    \[\sum_{i=2}^na_i=\prod_{i=2}^na_i\]

  • z^n-1=(z-1)(z-e_2)(z-e_3)...(z-z_n)=(z-1)(z^{n-1}+...+z+1)
  • Dus is (z-e_2)(z-e_3)...(z-z_n)=z^{n-1}+...+z+1
  • Stel hierin z=1 en je vindt dat het rechterlid uit de te bewijzen formule gelijk is aan n.
  • Verder is het linkerlid gegeven door \sum_{i=2}^na_i=\sum_{i=1}^na_i= \sum_{i=1}^n1-\sum_{i=1}^ne_i=n-0=n.
  • Bij de laatste stap maken we gebruik van de eigenschap dat de som van de wortels van z^n-1 gelijk is aan de coëfficiënt van de op één na hoogste graadsterm.
  • Hiermee is het gestelde bewezen.