Een nieuwe zeshoek

Neem een willekeurige convexe zeshoek. Met telkens drie opeenvolgende hoekpunten van deze zeshoek vormt men zes driehoeken. Construeer het zwaartepunt van deze driehoeken. De alzo verkregen punten zijn de hoekpunten van een nieuwe zeshoek. Toon aan dat de paren overstaande zijden van deze zeshoek evenwijdig en even lang zijn.

We geven de hoekpunten A_i van de oorspronkelijke zeshoek willekeurige coördinaten (3x_i,3y_i) ( drievouden omdat we het zwaartepunt moeten berekenen). Het zwaartepunt van driehoek A_1A_2A_3 is het punt Z_1(x_1+x_2+x_3,y_1+y_2+y_3). Analoge coördinaten voor de andere hoekpunten. We proberen nu aan te tonen dat Z_1Z_6 evenwijdig is met Z_3Z_4 en dat |Z_1Z_6|=|Z_3Z_4|.

  • De richtingsgetallen van Z_1Z_6 zijn (x_1+x_2+x_3,y_1+y_2+y_3)-(x_6+x_1+x_2,y_6+y_1+y_2)=(x_3-x_6,y_3-y_6)  De richtingsgetallen van Z_3Z_4 zijn (x_3+x_4+x_5,y_3+y_4+y_5)-(x_4+x_5+x_6,y_4+y_5+y_6)=(x_3-x_6,y_3-y_6) Bijgevolg is Z_1Z_6 evenwijdig  met Z_3Z_4.
  • |Z_1Z_6|=\sqrt{(x_3-x_6)^2+(y_3-y_6)^2}=|Z_3Z_4|.