Determinant

Bereken de kans dat de determinant van een 2×2 matrix, met natuurlijke getallen als elementen, ¬†even is.

 

  • Gegeven een matrix A=\begin{pmatrix}a&b\\c&d\end{pmatrix}.
  • Zijn determinant is

        \[det A =ad-bc\]

  • Een product van twee natuurlijke getallen is oneven als beide getallen oneven zijn, dus de kans dat ad oneven is, is \frac{1}{4}. De kans dat ad even is, wordt dat \frac{3}{4}.
  • Nu is det A even als ad en bc beiden even zijn of beide oneven zijn.
  • De kans dat det A even is , is bijgevolg gelijk aan \frac{1}{4}.\frac{1}{4}+\frac{3}{4}.\frac{3}{4}=\frac{10}{16}=0,625