Kan men een hoek van 1 radiaal construeren met passer en liniaal?

 

In 1873 bewijst Charles Hermite dat het getal e, de basis van de natuurlijke logaritmen, transcendent is. Ferdinand Lindemann toont in 1882 de transcendentie van \pi aan. Het werk van Lindemann is in feite een handige veralgemening van het resultaat van Hermite. Lindemann bewijst: als z een algebraïsch getal is, verschillend van nul, dan is e^z transcendent. Transcendente getallen kunnen niet met passer en liniaal geconstrueerd worden.

De imaginaire eenheid i is een algebraïsch getal, want i is een wortel van de vergelijking x^2+1=0, bijgevolg is e^i transcendent. We weten dat e^i=\cos 1+i \sin 1. Omdat de som van twee algebraïsche getallen algebraïsch is , kunnen \cos 1 en \sin 1 onmogelijk allebei algebraïsch zijn. Maar als bijvoorbeeld \cos 1 algebraïsch zou zijn dan is \sin 1=\sqrt{1-\cos^2 1} het ook en omgekeerd. Bijgevolg zijn \cos 1 en \sin 1 allebei transcendent en is het duidelijk dat een hoek van 1 radiaal niet te tekenen is met passer en lineaal.