Griekse wiskunde deel 2

De bloeitijd van de school van Pythagoras (550-450 v. C.)

Pythagoras( 580-497 v.C.) was de stichter van het filosofisch-religieus-wetenschappelijk genootschap dat in Croton( Zuid-Italie) rond het midden van de 6 de eeuw voor Christus tot ontwikkeling komt en waarvan de leden ( Pythagoreeers genoemd) zich later over de Griekse steden in Zuid-Italie verspreiden. Volgens hun leer moet de onsterfelijke ziel gereinigd worden door het  onderhouden van strenge leefregels ( Acusmata) en door de studie van muziek, getallenleer, meetkunde en sterrenkunde ( de 4 Mathemata). Elke abstracte of concrete werkelijkheid kan door een natuurlijk getal voorgesteld worden.  Alle ontdekkingen worden aan de meester (Pythagoras) opgedragen zodat er geen namen van wiskundigen uit die tijd bekend zijn.  Na zijn dood valt de school uiteen in verschillende sektes: de Mathematicoi die een haast zuiver wetenschappelijke richting uitgaan en de Acuslaticoi die trouw blijven aan de strenge leefregels.  Tot deze laatste groep hoort een Pythagoraeeer die het bestaan van een irrationaal getal ontdekt en daardoor het ganse Pythagorische wereldbeeld laat  instorten. De  meeste sekten worden rond 430 v.C. door de Atheense aristocratie uit Zuid-Italie verbannen.

De grootste verdienste van de Pythagoreeers bestaat hierin dat zij de wiskunde, en vooral de meetkunde, definitief bevrijd hebben van utilitaire motieven. 

Behandelde onderwerpen uit de meetkunde : 

  • stelling van Pythagoras
  • som van de hoeken van een driehoek
  • hoeken die ontstaan door twee evenwijdigen te snijden met een derde rechte
  • oppervlakte van een willekeurige veelhoek
  • eigenschappen van hoeken en bogen in een cirkel

De Pythagorische meetkunde vertoont veel sporen van Babylonische herkomst; zo zijn er een hele reeks stellingen die duidelijk het meetkundig verlengstuk zijn van algebraische vraagstukken . We vinden bijvoorbeeld de formule a^2-b^2=(a+b)(a-b) als betrekkingen tussen oppervlakten van rechthoeken en vierkanten.

Of: is een lengte a en een oppervlakte S gegeven, construeer dan een lengte x zodat de rechthoek met zijden a + x en x als oppervlakte S heeft: deze opgave laat zich herleiden tot het oplossen van de vergelijking ax+x^2=S.

Het abstract getal begrip is ongetwijfeld een creatie van de Pythagoreeers; Ze ontwikkelden een vrij hoogstaande theorie van de natuurlijke getallen, waarbij ze ook gebruik maakten van meetkundige figuren.    Behandelde onderwerpen uit getallenleer :

  • eigenschappen van even en oneven getallen
  • theorie van deelbaarheid (priemgetallen)
  • theorie van evenredigheden
  • kwadraatgetallen, driehoeksgetallen rechthoekige getallen, ruimtelijke getallen

Voor de Pythagoreeers van de oude school waren de natuurlijke getallen de bouwstenen waarmee de hele kosmos kon beschreven worden. Het bestaan van andere dan natuurlijke getallen is voor hen gewoon ondenkbaar. Zij beschouwen breuken dan ook niet als getallen, maar als verhoudingen van twee natuurlijke getallen ( leer van de evenredigheden ). De ontdekking van een getal dat noch een natuurlijk getal is noch een breuk, m.a.w. dat niet rationaal  (ratio=rede,verhouding) is, dus irrationaal, betekent dan ook de totale instorting van de kosmologische opbouw van de Pythagoreeers.

Ze bewijzen dat de schuine zijde en een rechthoekszijde van een rechthoekige driehoek ( met als rechthoekszijden 1 eenheid) onderling onmeetbaar zijn, waarmee bedoeld wordt dat er geen lijnstuk bestaat dat een geheel aantal keren zowel in de schuine als de rechthoekszijde gaat ( = de verhouding van de schuine zijde tot de rechthoekzijde is een irrationaal getal, dat wij voorstellen als \sqrt{2}. Alzo doorbreken de Pythagoreeers zelf de begrenzingen van hun getalbegrip.

      

Pythagoras

Vraag iemand wat hij nog kent uit de wiskunde, dan heb je veel kans dat de naam Pythagoras voor de dag komt.

Vooreerst: de stelling  werd reeds  lang toegepast voor er zelfs sprak was van Pythagoras. De Babyloniërs, Egyptenaren en Chinezen kenden deze eigenschap reeds lang. Op verschillende Babylonische kleitabletten komen vraagstukken voor, waarin een zijde van een rechthoekige driehoek berekent wordt uit de twee andere zijden.  Zij beschikten zelfs over tabellen van Pythagoras getallen ( gehele getallen die voldoen aan de stelling hierboven). Typisch bij die preredenerende wiskunde is dat geen enkel bewijs werd aangetroffen. De formules werden ook niet in een algemene vorm opgeschreven, maar onmiddellijk toegepast.

Voor bewijzen in de wiskunde moeten we wachten tot de Grieken op de voorgrond treden. Voor de eerste keer in de geschiedenis heeft de mens behoefte de wereld en haar verschijnselen te verklaren met behulp van het zuivere intellect.  Zo zou bijvoorbeeld de wiskundige Thales omstreeks 600 voor Christus voor het eerst het aspect bewijzen naar voor brengen in zijn werk.

Het is echter Pythagoras die we de eerste exacte wetenschappelijke onderzoeker kunnen noemen. Hij was niet de ontdekker van de naar hem genoemde stelling, maar hij was wel de eerste die een algemeen meetkundige bewijs gaf. Hij  was  de  eerste  wiskundige die  de  wiskunde  bestudeerde  als   theorie  en  niet  als praktische toepassing.   De intellectuele  sprong van 5 mensen,  5 boten, enz. naar  het  abstracte  getal 5 was  een  grote  gebeurtenis,  ook   al  is  dat  voor   ons  volkomen  normaal.

Pythagoras werd geboren rond 570 v. Chr. op het Griekse eiland Samos. Hij groeide op op Samos en reisde veel met zijn vader en bezocht zo de Griekse filosoof en wiskundige Thales en woonde lezingen bij van Anaximander, een leerling van Thales. Hij bezocht ook Egypte en tijdens de oorlog tussen Egypte en Perzië werd hij gevangengenomen en naar Babylon gebracht. Rond 520 v. Chr. keerde hij terug naar Samos. Vlak daarna ging hij naar Zuid-Italië en stichtte zij Pythagoreïsche school in Croton.

Pythagoras’ groep, de Pythagoreeërs, was een soort sekte waar religie en wiskunde hand in hand gingen. De Pythagoreeërs bestonden uit twee groepen: de eerste groep de mathematikoi , woonde bij en werd onderwezen door Pythagoras. De groep moest ethisch leven, het pacifisme aanhangen en de ‘ware aard van de werkelijkheid’ bestuderen: getallen of wiskunde. De tweede groep waren  de akousmatikoi, die in hun eigen huis woonden en alleen overdag naar de school kwamen.

Maar niet alles was wiskunde. De  Pythagoreeërs geloofden ook in zielsverhuizing en reïncarnatie.    

In 508 v. Chr. werd de Pythagoreïsche gemeenschap aangevallen door Cylon, een edelman uit Croton. Pythagoras vluchtte naar Metaponte en overleed ongeveer 8 jaar later. Na zijn dood splitste de groep zich op in een wiskundige en een religieuze tak.

Stelling van Pythagoras

Deze tekst is gemaakt door Joran Deschagt, leerling van 6WEWI uit het H.Drievuldigheidscollege in Leuven.

 

    \[a^2+b^2=c^2\]

Iedereen kent de stelling dat in een rechthoekige driehoek de som van de kwadraten van de rechthoekszijden gelijk is aan het kwadraat van de schuine zijde. Wij kennen deze stelling als de stelling van Pythagoras. Maar deze stelling was al gekend bij de Soemeriërs en de Egyptenaren, lang voor Pythagoras.

Er zijn in feite heel  veel verschillende bewijzen voor de stelling van Pythagoras. Ook werden deze over heel de wereld ontworpen, van Azië tot Amerika. Er was er zelfs één van de Amerikaanse president, J. A. Garfield. We geven een kleine selectie:

Het oudste bewijs dat we hebben gevonden situeren we ergens tussen 1200 v.C. – 100v.C. in een oud Chinese leerboek Chou-Pei Suan Ching.

De zijde van het grote vierkant is a + b en de oppervlakte dus (a+b)^2. Hierbij zijn a en b de zijden van de rechthoekige driehoeken die getekend staan tussen het grote vierkant en het kleine vierkant. De zijde van het middelste vierkant is c. De oppervlakte van het grote vierkant is de som  van  de oppervlakten van de 4 rechthoeken en de oppervlakte van het kleine vierkant: (a+b)^2=4. \frac{ab}{2}+c^2. Hieruit volgt dan de stelling van Pythagoras.

Het bewijs van president Garfield steunt op de oppervlakte van een trapezium

De oppervlakte van het trapezium is gelijk aan de som van de oppervlakten van de drie driehoeken, dus (a+b).\frac{a+b}{2}=\frac{ab}{2}+\frac{ab}{2}+\frac{c^2}{2}. Uitrekenen geeft ….de stelling van Pythagoras!

 

Een recenter bewijs komt van Xiaolin Zhong, professor aan het UCLA:

Draai de driehoeken ABH en BCD naar de driehoeken HGF en FED; Je ziet hier 4 keer die driehoek ‘rond’ het binnenste vierkant en 2 keer in dat binnenste vierkant. Het grootste vierkant heeft  een zijde van a + b en een oppervlakte gelijk aan (a+b)^2 en bestaat uit 4 rechthoeken en een vierkant met zijde EG. Het vierkant FDCH heeft oppervlakte c^2 en bestaat uit 4 driehoeken (die 2 rechthoeken vormen) en dat vierkant met zijde EG. Hieruit kan je het gewenste resultaat afleiden.

 

Waar ligt de horizon

Als we kijken naar de horizon, volgt onze blik een richting die raakt aan de aardbol.

De raaklijn staat loodrecht op de straal in het raakpunt. De afstand A van ons oog naar de horizon is dus gemakkelijk te berekenen via de stelling van Pythagoras: A^2=(R+h)^2-R^2. Hieruit volgt dat : 

    \[A=\sqrt{h^2+2Rh}\]

De aardstraal is ongeveer 6371 km. Omdat de ooghoogte h verwaarloosbaar is ten opzichte van R, kunnen we volgende benadering geven:

    \[A\approx 112,88 \sqrt{h}\]

Voor h=1,75m vinden we A=4,7 km.

Pythagorese drietallen

Een Pythagorees drietal is een drietal positieve gehele getallen (a,b,c) waarvoor geldt dat

    \[a^2+b^2=c^2\]

Deze afbeelding heeft een leeg alt-attribuut; de bestandsnaam is pyt1.png

Zo zijn (3,4,5) en (5,12,13) allebei Pytagorese drietallen.
Het is duidelijk dat als (a,b,c) een Pythagorees drietal is, dat dan ook (ad,bd,cd) een Pythagorees drietal is. Oplossingen van a^2+b^2=c^2 die relatief ondeelbaar zijn, noemen we primitieve Pythagorese drietallen. Hiervoor kennen we volgend resultaat:


Als m en n relatief ondeelbare postieve gehele getallen zijn met m>n en waarbij één ervan even is en de andere oneven, dan vormen  a=m^2-n^2, b=2mn en c=m^2+n^2 een primieteve oplossing van a^2+b^2=c^2. Bovendien geldt dat elke primitief Pythagorees drietal van die vorm moet zijn, op een mogelijke permutatie van a en b na.