Het getal van Champernowne

Een 0, gevolgd door een komma en alle natuurlijke getallen op rij, noemt men het getal van Champernowne (Engels wiskundige 1912-2000).

  • Het is een irrationaal getal, want het kan niet geschreven worden als een quotiënt van twee gehele getallen.
  • Sommige irrationale getallen zijn transcendent ( zoals \pi en e): ze zijn geen oplossing van een veeltermvergelijking met gehele coëfficiënten. Het getal van Champernowne is transcendent.
  • Sommige transcendente getallen zijn normaal. Elke eindige reeks van cijfers komt bij benadering even vaak voor als alle andere cijferreeksen van dezelfde lengte. David Champernowne heeft laten zien dat zijn getal normaal is  door aan te tonen dat niet alleen de cijfers 0 tot en met 9 even vaak voorkomen, maar ook alle combinaties van twee cijfers en alle combinaties van drie cijfers.

Het getal van Champernowne is een van de eerste geconstrueerde normale getallen. Hij bedacht het in 1933 en in 1937 bewees de Duitse wiskundige Kurt Mahler dat het transcendent was.

 

Mooiheid van getallen



De teller van elke breuk van je schrijven als n*111=n*3*37. Hierbij kan n elke waarde uit \{1,2,\cdots,9\} aannemen.

De noemer van elke breuk is dat n+n+n=3*n

Bijgevolg is elke breuk gelijk aan \frac{n*3*37}{3*n}=37.

 

Grazende koeien

 

Op een weide grazen 70 koeien in 24 dagen de hele weide kaal. Zou men er slechts 30 koeien opzetten dan was er voldoende gras voor 60 dagen. Hoeveel koeien kan men op de weide plaatsen als men wilt dat er voldoende voedsel is voor 96 dagen?

  • Hoe meer koeien hoe minder graasdagen? Dus omgekeerd evenredig?
  • Neen, want dan zou het product van het aantal koeien en het aantal graasdagen constant moeten zijn en in ons verhaal is dat niet zo :

        \[70*24\neq 30*60\]

  • Er zit een verborgen onbekende in ons probleem. We mogen gerust veronderstellen dat het gras op gelijkmatige wijze groeit van dag tot dag. Noteer met y de dagelijkse aangroei van de grashoeveelheid als fractie van de oorspronkelijke hoeveelheid. Stel de oorspronkelijke hoeveelheid gras door door 1.
  • Per dag eten de koeien dan, in het eerste geval,

        \[\frac{1+24y}{24}\]

  • Per koe en per dag is dat dan

        \[\frac{1+24y}{24*70}\]

  • Een analoge redenering voor de tweede situatie geeft dan:  

        \[\frac{1+60y}{30*60}\]

  • Door deze 2 formules aan elkaar gelijk te stellen vinden we y=\frac{1}{480}
  • Elke koe eet dus per dag een \frac{1}{1600}-ste deel van de oorspronkelijke hoeveelheid gras eet.
  • In te vullen in het laatste gegeven, waarbij we het aantal koeien voorstellen door x, krijgen we :

        \[\frac{1+96\frac{1}{480}}{96x}=\frac{1}{1600}\]

  • Hieruit volgt dat x=20.

Dit probleem is gebaseerd op het grazende koeienprobleem van Sir Isaac Newton ( in Aritmethica Universalis uit 1707)

Roosterpunten op een hyperbool

Beschouw de vergelijking

    \[3x^2-4xy+5=0\]

Bij de vraag  naar oplossingen (x,y) van deze vergelijking is het nodig te specifiëren tot welke verzameling deze oplossingen moeten behoren. De grafiek, volgens Wolfram Alpha, is:

  • Elke reële oplossing bepaalt een punt van deze parabool.
  • De rationale oplossingen zijn

        \[\{(q,\frac{3q^2+5}{4q}: q\in \mathbb{Q}\}\]

    De hyperbool bevat dus ook oneindig veel punten met rationale coördinaten.
  • Zijn hier gehele oplossingen bij en zo ja dewelke? Als we op zoek zijn naar gehele oplossingen en als de vergelijking ook enkel gehele coëfficiënten heeft, spreken we van een Diophantische vergelijking. 
    Omdat

        \[3x^2-4xy+5=0\leftrightarrow x(3x-4y)=-5\]

    moeten, als x en y geheel zijn, zowel x als 3x-4y gehele delers zijn van -5. Dit aantal is eindig.
    Dit geeft 4 oplossingen met gehele getallen of met andere woorden 4 roosterpunten op de hyperbool: (1,2),(-1,-2),(5,4) en (-5,-4)