Het monster

In 1981 construeerde de Amerikaanse wiskundige Robert Griess( 1945-) het Monster: de grootste en een van de meest mysterieuze van de zogenaamde sporadische groepen.

Elk natuurlijk getal kan geschreven worden als product van priemfactoren. Bij groepen heeft men hetzelfde proberen te doen: ‘enkelvoudige’ groepen vinden zodat dat elke groep te schrijven is als product van enkelvoudige groepen. Er bestaan 18 families van dergelijke enkelvoudige groepen elk met aftelbaar  oneindig veel elementen. De verzameling van de cyclische groepen met priem orde is één van die families. Buiten die 18 families zijn er nog enkele enkelvoudige groepen die niet thuis horen in die families. Deze opzichzelfstaande groepen worden sporadische groepen genoemd. Daarvan zijn er 26.

De monster groep is de grootste en telt

    \[2^{46}.3^{20}.5^9.7^6.11^2.13^2.17.19.23.29.31.41.47.59.71\]

elementen. Je deze groep  voorstellen als een sneeuwvlok met meer dan 10^{53} symmetrieën.

De structuur van de monster groep suggereert nauwe verbanden tussen symmetrie en natuurkunde en kan zelfs verband houden met de snaartheorie.

In 1973 kondigden Griess en Bernd Fischer (1956-) het bestaan van het monster aan. Het kreeg zijn naam van John Conway en het was de Britse wiskundige Richard Borcherds (1959-), die voor zijn werk aan het begrijpen van het Monster, uiteindelijk een Fields-medaille kreeg.

Graaf van een groep

Er bestaat een manier om de structuur van een groep visueel voor te stellen. Het was de Engelse wiskundige Arthur Cayley die in 1878 als eerste gebruik maakte van de theorie van de grafen om dit te doen. We spreken dan ook van een Cayley – graaf van een groep.

Gegeven zijn een groep G en een verzameling van generatoren van de groep. De Cayley – graaf van G is dan een gekleurde en gerichte graaf die opgebouwd is volgens de volgende regels:

  • Met elk element van de groep correspondeert 1 knoop van de graaf.
  • Voor elke generator gebruiken we een aparte kleur.
  • Als a een generator is, dan gaat er, in de kleur die bij a hoort, een gerichte zijde van elk element g van de groep naar het element g.a.

Voor de cyclische groep van orde 6 ( \mathbb{Z}_5,+ ) is de graaf zeer eenvoudig: De generator is 1.

Voor de dihaedergroep D_4 is het al wat moeilijker: de generatoren zijn a en b. De rode pijl geeft de  rechtervermenigvuldiging met a en de blauwe de rechtervermenigvuldiging met b. Bij de blauwe pijl ontbreekt de pijlrichting omdat de pijl heen en terug gaat.