Een korte geschiedenis van pi

Pi is de verhouding tussen de omtrek en de middellijn van een cirkel:

    \[\pi=\dfrac{\text{omtrek}}{\text{middellijn}}\]

Dit leidt tot de misvatting dat pi een rationaal getal is, want het kan geschreven worden als een breuk! We vergeten hierbij dat, in een breuk, felle en noemer gehele getallen moeten zijn. Maar bij pi is hetzij de omtrek , hetzij de diameter irrationaal. 

Het idee van pi als constante bestaat al lang. De Egyptenaren schatten het op \frac{25}{8}=3,125 en de Mesopotamiërs gaven het de waarde van \sqrt{10}\approx 3,162.

Archimedes was de eerste die pi grondig onderzocht. Door veelhoeken in een cirkel te  tekenen en hun omtrek te berekenen, kon hij pi schatten tussen \frac{223}{71} en \frac{22}{7}. sinds Archimedes is de nauwkeurigheid van pi groter geworden. Dank zij de computer kennen we nu pi tot op miljarden cijfers nauwkeurig.

Een paar schattingen door de eeuwen heen:

  • papyrus Rhind ( 1650 BC) :  3,16045
  • Archimedes (250 BC) : 3,1418
  • Ptolemaeus (150 AD) 3,14166
  • Brahmagupta (640 AD): 3,1622   
  • Al-Khwarizmi (800 AD) : 3,1416
  • Fibonacci (1220 AD) : 3,141818

Het symbool \pi, voor pi werd in 1706 geïntroduceerd door William Jones in zijn boek Synopsis Palmariorum Mathesis. 

Pi kan ook voorgesteld worden door een reeks . De veertiende eeuws Indiase wiskundige Madhava gebruikte de volgende reeks :

    \[\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\cdots\]

Dit convergeert eerder traag naar pi. Euler gebruikte de reeks :

    \[\frac{\pi^2}{6}=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}\cdots\]

De Engelse wiskunde Wallis maakte gebruik van:

    \[\frac{\pi}{2}=\frac{2}{1}*\frac{2}{3}*\frac{4}{3}*\frac{4}{5}*\frac{6}{5}\cdots\]

 

Het getal e

Het product 1.2.3.4….n wordt genoteerd door n! en noemt men n faculteit. De grootte van de faculteiten neemt zeer snel toe:
1!=1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5040
8!=40320
9!=362880
10!=3628800

Even snel nemen dus de waarden van de termen in de volgende som af:

    \[a_n=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots +\frac{1}{n!}\]

We kunnen verwachten dat, naarmate n groter wordt, de waarde van a_n zeer weinig zal toenemen en een bepaald getal niet zal overschrijden. We kunnen aantonen dat a_n kleiner blijft dan 3.

Als we in k! elke factor, behalve de eerste, vervangen door 2, dan zien we duidelijk dat  k!> 2^{k-1}. Bijgevolg is a_n kleiner dan 1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{n-1}}. Vanaf de tweede term herken je hierin de som van de termen van een meetkundige rij.De limiet hiervan is \frac{1}{1-0,5}=2. Hieruit volgt dat , voor toenemende n waarden, a_n zeker kleiner is dan 1+2=3.

De getallen a_n zijn termen van een naar boven begrensde , stijgende rij en dus zal die rij convergeren. Die limiet noemen we het getal e. Met a_{12} te berekenen vindt we dat e\approx 2,7182818.

 


Het was de Schotse wiskundige John Napier die het eerst met dit getal geconfronteerd werd, toen hij werkte aan de eerste rekenlinialen.

Het getal werd door Euler het exponentiële getal genoemd. Vandaar ook, waarschijnlijk, de letter e voor dit getal. Het was ook Euler die de meeste eigenschappen van dit getal vond.

7 bruggen van Koningsbergen

De grote wis- en natuurkundige Leonhard Euler (1707-1783) publiceerde
in 1736 het zogenaamde Koningsberger bruggenprobleem. De stad Koningsbergen, die sinds 1945 Kaliningrad heet, ligt aan de oevers van en op twee eilanden in de rivier de Pregel. De oevers en de eilanden waren in Eulers tijd verbonden door zeven bruggen. De Koningsbergers waren gewend ’s zondags een lange wandeling door de stad te maken en Euler vroeg zich nu af of hij  een wandeling  zou kunnen ontwerpen, waarbij elk der bruggen juist eenmaal zou gepasserd worden.

We vereenvoudigen de plattegrond van Koningsbergen door elk der vier stadsdelen A, B, C en D door een punt voor te stellen en elk der zeven bruggen door een lijn. Een dergelijke figuur noemt men een graaf.  De  graaf in ons probleem heeft vier hoekpunten en zeven kanten. We kunnen het bruggenprobleem nu zo formuleren: Is het mogelijk de graaf zo te doorlopen, dat daarbij elk der kanten slechts éénmaal gepasseerd wordt? Beginnen we bijv. bij het hoekpunt A, dan moet daar een ,,uitgaande kant”, maar ook een ,,inkomende kant” zijn. Telkens als we via een der kanten in een hoekpunt aankomen, moet daar weer behalve de ,,inkomende” ook een ,,uitgaande kant” zijn. Hieruit blijkt, dat als we de graaf zo willen doorlopen, dat we elk der kanten slechts eenmaal gebruiken, er bij elk hoekpunt een even aantal kanten moeten samenkomen. Aangezien dat niet het geval is, is het onmogelijk een wandeling door Koningsbergen te organiseren, waarbij elk der bruggen slechts éénmaal doorlopen wordt.

De ongelijkheid van Euler

Eén van de oudste ongelijkheden in een driehoek is de ongelijkheid van Euler die een verband geeft tussen de stralen van de omgeschreven en ingeschreven cirkel.

Als O het middelpunt is van de omgeschreven cirkel ( met straal R) van driehoek ABC en I het middelpunt van de ingeschreven cirkel (met straal r), noteer dan d=|OI|. Dan geldt er:

    \[d^2=R^2-2Rr\]

Hieruit volgt dan dat

    \[R\geq 2r\]

Het gelijkheidsteken geldt enkel als de driehoek gelijkzijdig is.

Fermat priemgetallen en regelmatige veelhoeken

De Franse wiskundige Pierre de Fermat( 1601-1665) dacht dat alle getallen van de vorm 2^{2^n} priemgetallen waren. En voor de eerste 5 waarden van n was dat ook zo:

\begin{array}{c|c} n& 2^{2^n} \\ \hline\\ 0 &3\\1&5\\2&17\\3&257\\4&65.537\end{array}

Later ontdekte Leonard Euler( 1707-1783) in 1732 dat het Fermat getal voor n = 5 ontbonden kon worden als  4.294.967.297 = 641 x 6.700.417. En hier zou het verhaal dan stoppen, ware er niet de geniale ontdekking van Carl Friedrich Gauss(1777-1855).

In 1794 vond Gauss dat een regelmatige veelhoek met p zijden (met p een priemgetal ) construeerbaar is met passer en liniaal als en slechts als p een Fermat priemgetal is, dus een priemgetal van de vorm 2^{2^n}. Als eerbetoon werd in Brauschweig, de thuisstad van Gauss,  een bronzen standbeeld opgericht waar hij staat op een regelmatige zeventien hoek.

Welke regelmatige veelhoeken zijn dan construeerbaar met passer en liniaal? Volgens Gauss’ resultaat zijn dat de gelijkzijdige driehoek, de regelmatige 5-hoek, de regelmatige 17-hoek, de regelmatige 257-hoek en de  regelmatige 65.537-hoek. We weten dat ook de regelmatige veelhoeken met 7,11,13,19,… zijden niet construeerbaar zijn omdat het wel priemen zijn, maar geen Fermat priemen. Verder zijn ook regelmatige veelhoeken met 4,8,16,32,.. en 6,12,24,48,… zijden construeerbaar omdat we met passer en liniaal een hoek in twee kunnen verdelen. En wat met de anderen? Is een regelmatige 15 hoek construeerbaar?  Het blijkt van wel, omdat \frac{1}{15}=\frac{2}{5}-\frac{1}{3} en dus kunnen we een cirkel in 15 gelijke delen verdelen.

Het was uiteindelijk Pierre Wantzel die in 1837 volgend algemeen reultaat bewees: Een regelmatige n-hoek is construeerbaar met passer en liniaal als en slechts als n het product is van een macht van 2 en een willekeurig aantal verschillende Fermat priemgetallen.