Opgave 16

Voor 3 positieve getallen a,b en c  geldt:

    \[\frac{9}{2(a+b+c)}\leq \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\leq \frac{1}{2}\Big(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Big)\]

Antwoord

  • In de eerste ongelijkheid stellen we a+b=x, b+c=y en a+c=z , dan wordt de opgave herschreven als \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z} of (x+y+z)\Big( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\Big )\geq 9.
  • We werken de haakjes uit en vinden: 3+\Big( \frac{x}{y}+\frac{y}{x}\Big)+\Big( \frac{x}{z}+\frac{z}{x}\Big)+\Big( \frac{y}{z}+\frac{z}{y}\Big) \geq 9.
  • Uit de ongelijkheid over het rekenkundig en meetkundig gemiddelde vinden we dat \frac{1}{2}\Big( \frac{x}{y}+\frac{y}{x}\Big) \geq \sqrtç \frac{x}{y}\frac{y}{x}=1, dus het linkerlid uit vorig punt is groter of gelijk aan 3+2+2+2=9 wat moest bewezen worden.
  • Voor het tweede deel van de ongelijkheid gebruiken we de ongelijkheid over het harmonisch en meetkundig gemiddelde: \frac{1}{a}+\frac{1}{b} \geq \frac{2}{\sqrt{ab}}. Volgens de ongelijkheid over het rekenkundig en meetkundig gemiddelde is bovendien \frac{2}{\sqrt{ab}} \geq \frac{4}{a+b}.
  • Pas dit nu toe op de drie termen van het linkerlid van de gevraagde ongelijkheid en het bewijs is klaar.