Opgave 39

Bewijs dat geen enkel getal van de vorm

    \[3^m+3^n+1\]

met m en n strikt positieve gehele getallen, een volkomen kwadraat is.

Antwoord

  • Veronderstel dat er toch een natuurlijk getal k bestaat zodat

        \[3^3+3^n+2=k^2\]

  • Dan is 3^m+3^n=(k+1)(k-1). Omdat het linkerlid even is en omdat k-1 en k+1 dezelfde pariteit hebben, zijn k-1 en k+1 opeenvolgende even getallen.
  • Dit betekent ook dat ofwel k-1 ofwel k+1 een viervoud is. Het rechterlid (k-1)(k+1) is dus deelbaar door 8.
  • Bij deling door 8 zijn de resten van machten van 3 ofwel 1 ofwel 3. De som 3^m+3^n is dus modulo 8, gelijk aan 2,4 of 6 en dus zeker niet deelbaar door 8.
  • Bijgevolg kan 3^m+3^n+1 nooit een volkomen kwadraat zijn.

Op welk cijfer eindigt…

Wat is de rest bij deling door 10 van het 2022ste getal in de rij  

    \[3,3^3,3^{3^3},...\]

  • De gegeven rij kan ook gegeven worden door middel van een recursief voorschrift: t_1=3 en t_{n+1}=3^{t_n}.

  • Berekenen we een paar termen van de rij: 3 , 27 , 7625597484987. We zien dat ze zeer snel toenemen in grootte, maar we hebben wel al 2 keer een 7 achteraan. Zou dat een patroon zijn?
  • Elke term is een viervoud plus 3, want t_n=(4 voud -1)^{t_{n-1}} en omdat elke term in de rij oneven is is t_n dus een 4voud min 1, of met anders geformuleerd : een drievoud plus 3.

  • Dan is t_{n+1}=3^{4v+3}=3^3.3^{4v}=27.81^v.
  • Werken we nu modulo 10: t_{n+1}\equiv 7.1^v\equiv 7.
  • Dus elke term van de rij eindigt op 7, dus ook de 2022ste term.

De klok

Kunnen de drie wijzers van een uurwerk onderling twee aan twee hoeken van 120 graden vormen?

  • Noteer het tijdstip als x. Dit is een reëel getal. De kleine wijzer staat dan op 30x mod 360. graden, want na 1 uur heeft deze wijzer 30 graden afgelegd. De grote wijzer staat dan op 360x mod 360 graden, vermits er 60 minuten in een uur zijn. Omdat er 60 seconden in een minuut zijn , zal tenslotte de secondewijzer op 21600x mod 360 graden staan.
  • Het vraagstuk herleidt zich tot een volgend stelsel (telkens mod 360 genomen):

        \[30x-360x=120\]

        \[360x-21600x=120\]

        \[21600x-30x=120\]

  • Het kan ook het volgende  stelsel geven:

        \[360x - 30x=120\]

        \[21600x-360x=120\]

        \[30x-21600x=120\]

  • We bespreken enkel het eerste stelsel; het tweede geval verloopt analoog.
  • Na vereenvoudiging krijgen we :

        \[x=\frac{4}{11}(\mod \frac{12}{11})\]

        \[x=\frac{1}{177}(\mod \frac{3}{177})\]

        \[x=\frac{8}{719}(\mod \frac{12}{719})\]

  • Dus

        \[x=\frac{4}{11}(1+3k)=\frac{1}{177}(1+3l)=\frac{4}{719}(2+3m)\]

  • Maar dan moet  

        \[4.177.719(1+3k)=11.719(1+3l)\]

  • Dis  is onmogelijk want het eerste lid is een drievoud en het tweede niet!
  • De drie wijzers kunnen dus nooit twee aan twee een hoek van 120 graden vormen.

Toepassingen op stelling van Fermat

Nog even in herinnering brengen, de kleine stelling van Fermat luidt: Als p een priemgetal is Ena en p onderling ondeelbaar zijn dan is

    \[a^{p-1}\equiv 1 \mod p\]

 of

    \[a^p \equiv a \mod p\]

 

Nu een paar toepassingen:

  • n^{13}-n is altijd deelbaar door 2730. Bewijs.
    Spoiler

    • ]We weten dat 2730 = 2.3.5.7.13. Te bewijzen is dan dat n^{13}-n\equiv 0 \mod 2730.
    • Het volstaat dus te bewijzen dat de opgave deelbaar is door de priemfactoren 2,3,5,7,13.
    • En inderdaad n^{13}-n\equiv 0 \mod 2,3,5,7 en 13 met behulp van de stelling van Fermat



  • 5^p-2*3^p+1 is een p-voud als p priem is. Bewijs. 
    Spoiler
    • Modulo p is 5^p\equiv 5 en 3^p÷equiv 3
    • Dus is 5^p-2*3^p+1 \ 5-2*3+1\equiv 0:mod p.




  • 1492^n-1771^n-1863^n+2141^n is steeds deelbaar door 1946. Bewijs dit  en volgende opgaven zelf!
  • n ^2+2n+12 is nooit deelbaar door 112. Tip : vul alle waarden van n in modulo 7.
  • Als n oneven is, dan eindigt de decimale schrijfwijze van 2^{2n}(2^{2n+1}-1) steeds op 28.
  • Voor welke n is n^{n+1}+(n+1)^n een drievoud?

            

Stelling van Wilson

De kleine stelling van Fermat zegt ons dat voor een priemgetal p geldt dat a^p \equiv a \mod{p}. Maar dan zijn 1,2, … , p – 1 allemaal nulpunten van de veelterm X^{p-1}-1 in de verzameling \mathbb{Z}_p[X] en dus kunnen we, omdat er geen nuldelers zijn, volgende ontbinding neerschrijven: X^{p-1}-1 = (X-1)(X-2) \cdots (X-(p-1)).
Door hierin X te vervangen door 0, vinden we een deel van volgende stelling:

    \[p \text{ is priem  als en slechts als } (p-1)! \equiv -1 \mod{p}\]

Dit resultaat staat bekend als de stelling van Wilson, naar de Engelse wiskundige John Wilson (1741-1793). Nochtans komt dit resultaat een eerste keer voor bij Abu Ali al-Hasan ibn al-Haytham (965-1040)

Bovendien had Wilson geen bewijs van de stelling. Het was Lagrange die in 1771 het eerste bewijs ervan formuleerde.

Het is ook duidelijk dat als n een samengesteld getal is, groter dan 4,  dat  (n-1)! \equiv 0 \mod{n}.

Een algemene vorm is voor ieder oneven priemgetal p en voor ieder positief geheel getal k kleiner dan p:

    \[(k-1)!(p-k)! \equiv (-1)^k \mod{p}\]

Deze veralgemening danken we aan C.F.Gauss