Veralgemening van de driehoek van Pascal

In deze driehoek wordt elk element verkregen door de som te nemen van 3 elementen, namelijk het element erboven en de 2 elementen links daarvan. Zo is bijvoorbeeld het element 45 op de 6de rij gelijk aan de som 19 + 16 + 10. Als er op die plaatsen niets staat, wordt er 0 genomen.

De driehoek van Pascal is verbonden met het binomium van Newton. Deze veralgemeende versie van de driehoek van Pascal is verbonden met:

Zo kan je tevens gemakkelijk bewijzen dat de rijsom in deze veralgemeende versie steeds een macht van 3 is.  De rijsommen zijn inderdaad 1,3,9,27,81…

Dit is gemakkelijk te verklaren als je in bovenstaande formules a vervangt door 1.

Priemgetallen

De Poolse wiskundige W.Sierpinski (1882-1969) was eer gefascineerd door de priemgetallen en hun spreiding tussen de andere natuurlijke getallen. We vermelden twee mooie resultaten.

Men kan een rij van opeenvolgende natuurlijke getallen bepalen, zo lang als men wilt, die geen enkel priemgetal bevat. Zo kan men bijvoorbeeld 100 opeenvolgende getallen kiezen zonder dat er een priemgetal inzit.  Neem 101!+2,101!+3,…,101!+101. Dit zijn 100 opeenvolgende getallen en ze zijn geen van allen priem want ze zijn respectievelijk deelbaar door 2,3,…,101

Voor elke n kan men een priemgetal vinden met links en rechts ervan n niet-priemen:

  • Neem een priemgetal q groter dan n+1.
  • Bereken a=\prod_{j=1}^{q-2}(q^2-j^2).
  • q  is onderling ondeelbaar met a.
  • De stelling van Lejeune-Dirichlet over de rekenkundige rij zegt dat er een priemgetal p bestaat met p>q en p=ak+q.
  • Nu is q+j een deler van a en omdat p+j=ak+q+j ook een deler van p+j
  • Analoog is q-j een deler van p-j.
  • Dus zijn p-j en p+j niet priem en dit voor j=1,2,…,n

Neem n=2 en q respectievelijk de priemgetallen 5,7,11,13,…, dan kan je zo bewijzen dat er oneindig veel priemgetallen bestaan die geen deel uitmaken van een priemtweeling.

De parabool van Neile

In 1657 berekende de Britse wiskundige William Neile (1637-1670), als eerste de booglengte van een algebraïsche kromme:

    \[a^2x^3=y^2\]

Daarvoor kon men al wel de booglengte bepalen van transcendente krommen zoals de cycloïde en de logaritmische spiraal.

Deze kromme wordt de semikubische parabool , of parabool van Neile, genoemd, wat gemakkelijker te begrijpen valt als we deze herschrijven als y=\pm ax^{1,5}

Een parametervergelijking wordt gegeven door x(t)=t^2 en y(t)=at^3. De semikubische parabool ontstaat als evolute van de parabool. Een evolute is de meetkundige plaats van alle krommingsmiddelpunten (middelpunt van de cirkel die in het gegeven punt de kromme ‘kust’) van de gegeven parabool.

 

Fibonacci

Fibonacci, ook bekend als Leonardo Pisano, werd in 1170 geboren in Pisa,Italië. Hoewel hij in Italië werd geboren, groeide hij op en genoot hij zijn opleiding in Noord-Afrika. Zijn vader was immers diplomaat voor de republiek pissen vertegenwoordigde kooplieden die handelden via een haven in het huidige Algerije.

Omdat Fibonacci werd opgeleid in wat toen een deel van het islamitische rijk was, leerde hij werken met een veel beter getallenstelsel dan het stelsel dat toentertijd in Europa werd gebruikt. Fibonacci reisde veel en keerde in 1200 terug naar Pisa. daar schreef hij verschillende teksten, zoals liber Abaci (1202), Practica Geometrie(1220), Flos(1225) en liber quadratorum(1225). Hij overleed in 1250 in Pisa. Nu staat er een standbeeld van hem op de begraafplaats vlak bij de scheve toren van Pisa.

Practica Geometrie telt 8 hoofdstukken met meetkundige problemen gebaseerd op Euclides’ Elementen. In Flos lost hij een derdegraadsvergelijking op die Omar Khayyam al eerder oploste en hoewel de oplossing een irrationaal getal was, wist Fibonacci de oplossing te vinden, correct op 9 decimalen.

Liber quadratorum  is zijn beste boek ( alhoewel niet zo beroemd als liber abaci). Het is een tekst over getaltheorie, zonder duidelijk praktische toepassingen, maar wel fascinerend. In Liber quadratorum kijkt Fibonacci onder meer naar naar kwadraten en schrijft dat deze de som zijn van oneven getallen.Hij schrijft ook over een manier om Pythagorese drietallen te vinden: Neem een oneven kwadraat als start.  Neem vervolgens de som van alle oneven getallen tot aan het oneven getal dat in stap 1 werd gebruikt. Neem bijvoorbeeld als eerste stap 25. Dan berekenen we 1 + 3 + 5 + …+ 23=144. De som van de vorige twee resultaten is dan 25 + 144 = 169. Het gevonden Pyhagorees drietal is (5,12,13).