Principe van Cavalieri

Bonavatura Cavalieri ( 1598 – 1647) was een Italiaanse wiskundige. Hij is bij ons vooral gekend om het volgende principe: 

Twee objecten met dezelfde hoogte en met, op elke niveau , een dwarsdoorsnede met dezelfde oppervlakte, hebben een gelijk volume.

Zo kan men bijvoorbeeld  de inhoud van een bol bepalen:

Links zie je een halve bol met straal r en rechts een cilinder met straal r en hoogte r, waaruit een kegel gehaald is. De dwarsdoorsnede op een hoogte x boven het vlak P voor de linkse figuur  is een schijf met straal \sqrt{r^2-x^2}. De oppervlakte is dus \pi(r^2-x^2). De dwarsdoorsnede van de rechtse figuur is een ring begrensd door  twee cirkels met stralen r en x. De oppervlakte is \pi r^2-\pi x^2. Volgens het principe van Cavalieri hebben beide figuren dus hetzelfde volume. De inhoud van een halve bol is dus \pi r^2.r -\frac{1}{3} \pi r^2.r=\frac{2}{3}\pi r^3 en dus is de inhoud van een  bol gelijk aan \frac{4}{3}\pi r^3.

Het principe kan ook toegepast worden op de oppervlakte van vlakke figuren te berekenen. Zo is  de oppervlakte van een rechthoek met breedte b en hoogte h gelijk is aan die van een parallellogram met basis b en hoogte h, want elke dwarsdoorsnede heeft dezelfde lengte bij rechthoek en parallellogram.

Topologie

Topologie is een veralgemening van de meetkunde. Het woord is afgeleid   van het Grieks topos(plaats) en logos (studie). Het is een onderdeel van de wiskunde dat zich bezighoudt met eigenschappen in de n-dimensionele ruimte , die bewaard blijven bij continue vervorming (de objecten mogen niet worden gescheurd of geplakt). De term ‘topologie’ werd geïntroduceerd in 1847 door de Duitse wiskundige John Benedict Listing ( 1808-1892) in zijn werk Vorstudien zur Topologie . Listing was een leerling van Carl Friedrich Gauss.

In de beginperiode noemde men ‘ deze wiskunde’ : analysis situs, analyse van de positie. Rubbermeetkunde is een betere omschrijving van wat topologie eigenlijk betekent .

In topologie beschouwt men twee objecten als hetzelfde (homeomorf) als de ene continu vervormd kan worden tot de andere: uitrekken zonder  echter te scheuren of verschillende delen samen te plakken.

In de praktijk zijn continue vervormingen echter moeilijk te beschrijven. Er bestaat een andere methode om te zien wanneer twee objecten niet-homeomorf zijn. Hierbij maakt men gebruik van de Euler karakteristiek of de Poincaré-Euler karakteristiek: een geheel getal dat de  essentie van de vorm van een topologische ruimte weergeeft. 

De Eulerkarakteristiek wordt genoteerd door \chi. Noteer met h het aantal hoekpunten, met r het aantal ribben en met v het aantal zijvlakken van een figuur.

  • Voor figuren zoals de cirkel is \chi= h-r.
  • Voor figuren zoals een bol is \chi=h-r+v.

Voor een kubus ( en elk ander Platonisch veelvlak ) is \chi=2, want een kubus heeft 8 hoekpunten, 12 ribben en 6 zijvlakken: 8-12+6=2.

Voor de drievoudige torus kan men aantonen dat \chi=-4.

 

Het berekenen van de Euler karakteristiek gebeurt via triangulatie, waarop we hier niet verder ingaan. Belangrijk is om te weten dat, als figuren homeomorf zijn, hun Euler karakteristieken dezelfde zijn of door contra positie: als de Euler getallen verschillend zijn , dan zijn de figuren niet homeomorf.

 

necker kubus

De Necker kubus is vernoemd naar de Zwitserse kristallograaf Louis Necker (1786-1861)
Het is een lijntekening van een kubus in perspectief. Het is niet mogelijk te zeggen welke zijde van de kubus zich aan de voorkant bevindt. Twee mogelijkheden: 

 

Pi met wortels

Hoe kan je pi benaderen door middel van wortels? Bekijk volgende  mogelijkheid: de oppervlakte van een cirkel met straal 1 benaderen we door het gemiddelde te nemen van de oppervlaktes van een ingeschreven regelmatige achthoek en een omgeschreven regelmatige zeshoek.

  • Neem een omgeschreven zeshoek :
    om de oppervlakte te berekenen nemen we zes keer de oppervlakte van OAB. De hoogte OM van die driehoek is 1. De basis AB is 2*\tan 30^\circ=\frac{2\sqrt{3}}{3}. Bijgevolg is de oppervlakte van de zeshoek gelijk aan 2\sqrt{3}.
  • Neem vervolgens een ingeschreven regelmatige achthoek:
    de oppervlakte is gelijk aan acht keer de oppervlakte van driehoek OAB. De oppervlakte van die driehoek is gelijk aan \frac{1}{2}*1*1*\sin 45^\circ=\frac{\sqrt{2}}{4}, zodat de oppervlakte van de achthoek gelijk is aan 2\sqrt{2}.
  • Het gemiddelde van die twee oppervlaktes is dan \sqrt{2}+\sqrt{3}.
  • Aldus is \pi \approx \sqrt{2}+\sqrt{3}\approx 3.14626436994

Het 3n+1 vermoeden

Neem een natuurlijk getal n. Als het even is, deel het door 2. Als het oneven is, vermenigvuldig je het met 3 en tel er 1 bij op. Met de uitkomst doe je hetzelfde, en dat blijf je maar herhalen.

Neem bijvoorbeeld 6, dan ontstaat volgende rij : 6,3,10,5,16,8,4,2,1. We noemen dit de Collatz rij van 6. De lengte van deze Collatz rij is 9. De lengte van dergelijke rij kan snel oplopen. Zo is de lengte van de  Collatz rij van 27 gelijk aan 111.

Het 3n + 1-vermoeden zegt dat bovengenoemd iteratieproces bij iedere mogelijke startwaarde altijd een keer bij 1 zal uitkomen. De precieze oorsprong van het 3n + 1- vermoeden is niet helemaal duidelijk. In de jaren dertig was Lothar Collatz( 1910-1990), een Duitse wiskundige, met soortgelijke problemen bezig, en het 3n + 1-probleem wordt algemeen aan hem toegeschreven. Het is tot op heden nog steeds niet bewezen.

Er zijn enkele aanwijzingen dat het vermoeden van Collatz juist is. Voor alle getallen onder 10^{19}   is inmiddels gecontroleerd dat ze aan het vermoeden voldoen. Het probleem met het controleren is dat het alleen het vermoeden kan weerleggen. Als het vermoeden waar is, kan er geen bewijs voor gevonden worden op deze manier.