Bewijzen met verhaaltjes

Hoe bewijs je volgende formule? 

    \[k(k-1)\binom{n}{k}=n(n-1)\binom{n-2}{k-2}\]

Het gaat zeer snel door gebruik te maken van de definitie van  binomiaalcoëfficiënten. Maar er is ook een andere manier, die je ook kan gebruiken als het gebruik van de definitie wat ingewikkelder ligt. We verzinnen gewoon een verhaaltje …

Je wilt op school met n leerlingen een leerlingenraad van k personen oprichten, waarbij een voorzitter en een ondervoorzitter moeten aangeduid worden.

  • Het linkerlid van bovenstaande vergelijking komt overeen met volgende procedure: kies eerst k leden uit de n leerlingen. Dit  kan op \binom{n}{k} manieren. Kies in die groep van k gekozenen een voorzitter ( k mogelijkheden) en een ondervoorzitter ( k-1 mogelijkheden).
  • Het rechterlid correspondeert met de procedure: kies uit de n leerlingen eerst een voorzitter ( n mogelijkheden), dan een ondervoorzitter( n-1 mogelijkheden) en vul tenslotte aan tot je een groep van k leden hebt. Je moet dus nog k-2 leerlingen kiezen uit de n-2 beschikbare (\binom{n-2}{k-2} mogelijkheden).
  • Aangezien beide procedures hetzelfde probleem oplossen , zijn linkerlid en rechterlid gelijk aan elkaar.

Telescopische som

Eén van de technieken bij problem-solving bestaat eruit het probleem van een andere kant te bekijken of een eenvoudiger probleem te nemen. Illustreren we dit even met volgend probleem: Vereenvoudig:

    \[\sum_{n=1}^{2020}\tan n\tan(n+1)\]

  • We gaan het product herschrijven als een som zodat bij het sommeren van al die termen ze één voor één tegen elkaar wegvallen , op de eerste en laatste na.
  • Gebruik hiervoor de formule voor het berekenen van de tangens van een verschil: \tan((n+1)-n)=\tan 1=\frac{\tan(n+1)-\tan n}{1+\tan(n+1)\tan n}.
  • Hieruit volgt dat \tan n\tan(n+1)=\frac{\tan (n+1)-\tan n }{\tan 1}-1
  • Invullen in de opgave geeft :

        \[\frac{\tan 2021-\tan 1}{\tan 1}-2020=\frac{\tan 2021}{\tan 1}-2021\]

Waag eens een gokje

Je kan een aantal mogelijke oplossingen uitproberen. Misschien kan je zelfs het aantal mogelijke oplossingen beperken. Dan kan je best een  gokje wagen  en daarna proberen te bewijzen dat jouw voorstel tot oplossing de goede is.

Bepaal de volgende term in de rij:

    \[-1,-1,1,5,11,19,29,\cdots\]

  • Het is zeker geen rekenkundige rij. Een eerste graadsveelterm zal dus niet kunnen om de algemene term van de rij te bepalen. Het is ook geen meetkundige rij , dus ook een exponentiële functie zal niet volstaan.
  • Proberen we even met een tweedegraadsfunctie. Dus een uitdrukking van de vorm P(x)=ax^2+bx+c. Proberen we nu de waarden van de onbekenden a,b en c te vinden.
  • Uit P(1)=P(2)=-1 en P(3)=1 vinden we een stelsel:

        \[\left\{ \begin{array}{l}a+b+c=-1 \\ 4a+2b+c=-1\\9a+3b+c=1 \end{array} \right\]

    .

  • De oplossing van het stelsel is a=1, b=-3 e, c=1.
  • De vraag is natuurlijk of onze gok goed was! Voldoen de andere termen van de rij ook aan het voorschrift?
  • Nu is: P(4)=5, P(5)=11, P(6)=19, P(7)=29.
  • De volgende term in de rij is P(8)=41.

Veralgemeen

Het lijkt paradoxaal, maar soms kan een probleem vereenvoudigd en dus meer handelbaar en verstaanbaar gemaakt worden door het te  veralgemenen. Een meer algemenere formulering opent soms bredere perspectieven, laat de niet essentiële zaken weg en voorziet ons soms van een nieuw arsenaal van technieken.

Wat is het grootst:

    \[\sqrt[3]{60} \text{ of } 2+\sqrt[3]{7}\]

  • De derde macht nemen van beide getallen lijkt erg ingewikkeld te worden.
  • Probeer het meer algemeen probleem op te lossen: Wat is het grootst: A=\sqrt[3]{4(x+y)} of B=\sqrt[3]{x}+\sqrt[3]{y} ? Hierbij zijn x en y positief. De opgave is dan het speciaal geval met x=8 en y=7.
  • Stel x=a^3 en y=b^3. Dan is B^3=(a+b)^3=a^3+3a^2b+3ab^2+b^3. Verder is A^3=4(a^3+b^3).
  • Nu is A^3-B^3=3(a^3+b^3-a^2b-ab^2)=(a-b)(a^2-b^2)=(a-b)^2(a+b). Omdat x en y positief zijn, zijn ook a en b positief en is A^3-B^3 >0. Hieruit volgt dat A^3 > B^3 en dus ook dat A>B.
  • We besluiten dat \sqrt[3]{60} groter is dan 2+\sqrt[3]{7}.

					

Verdeel in verschillende gevallen

Soms kan het probleem  verdeeld worden in een aantal deelproblemen , die elk afzonderlijk kunnen behandeld worden. Dit gebeurt dikwijls als het probleem de al-kwantor bevat: voor alle x … Deze methode wordt ook wel het uitputtingsprincipe genoemd of de exhaustie methode.

Gegeven is een functie f:\mathbb{Q} \longrightarrow \mathbb{R}  met 

    \[\forall x,y \in \mathbb{Q}: f(x+y)=f(x)+f(y)\]

Bewijs dat \forall x\in \mathbb{Q}: f(x)=f(1).x.

  • We gaan het resultaat eerst bewijzen voor de positieve gehele getallen. De eigenschap klopt voor x = 1.
    Voor x = 2 hebben we f(2)=f(1+1)=f(1)+f(1)=2.f(1).
    Voor x = 3 is f(3)=f(2+1)=f(2)+f(1)=2.f(1)+f(1)=3.f(1).
    Het is duidelijk dat we dit proces kunnen verderzetten en dat voor elk positief geheel getal n geldt dat f(n)=n.f(1)
  • Nu controleren we de formule voor niet positieve gehelen. Eerst is er f(0)=f(0+0)=f(0)+f(0). Hieruit volgt dat f(0)=0=0.f(1). Neem nu het negatief getal m, dan is er een positief geheel getal n met m=-n. Bijgevolg is 0=f(0)=f(n+(-n))=f(n)+f(-n).
    Hieruit volgt dat f(m)= f(-n)=-f(n)=-n.f(1)=m.f(1), waarmee het gestelde bewezen is.
  • Nu komen de omgekeerden van de gehele getallen (verschillend van 0) aan de beurt. Stel m=\dfrac{1}{n}, dan geldt:
    f(1)=f(\dfrac{1}{n}+\dfrac{1}{n}+\cdots+\dfrac{1}{n})=n.f(\dfrac{1}{n}).
    Hieruit volgt dat f(\dfrac{1}{n})=\dfrac{1}{n}.f(1) of f(m)=m.f(1).
  • Tenslotte nemen we de rationale getallen onder de loep: x=\dfrac{m}{n}.
    Nu is f(\dfrac{m}{n})=f(\dfrac{1}{n}+\dfrac{1}{n}+\cdots+\dfrac{1}{n})=m.f(\dfrac{1}{n}).
    Dus is f(\dfrac{m}{n})=m.f(\dfrac{1}{n})=\dfrac{m}{n}.f(1).
    Bijgevolg geldt voor elk rationaal getal x=\dfrac{m}{n} dat f(x)=x.f(1).