Lissajous figuren

Op de grens van wiskunde en kunst vind je figuren als

We noemen het Lissajous figuren naar de Franse wiskundige Jules Antoine  Lissajous( 1822- 1880). Gefascineerd door trillingen, deed hij baanbrekend werk op het gebied van akoestiek en optica.

Een Lissajous figuur wordt verkregen door de parameter vergelijkingen:

    \[x=A \sin (at+c)\]

    \[y=B\sin bt\]

 

c noemt men het faseverschil. In onderstaande tabel zie je bovenaan verschillende waarden van c

 

Een aantal grafieken met bijhorende waarden van a en b


Een paar andere grafieken (soms in 3D):

 

Hoe lang zal de wereld bestaan?

In de grote tempel van Benares, onder de koepel die het centrum van de wereld aangeeft, staat een grote bronzen plaat, waarin drie diaman­ten naalden zijn bevestigd, elk ter lengte van een onderarm en zo dik als het lichaam van een bij.
Op één van deze naalden plaatste God bij de Schepping vierenzestig schijven van zuiver goud. De grootste rustte op de bronzen plaat, de volgende werden naar boven toe steeds kleiner. Dit is de toren van Brahma.

Dag en nacht, zonder onderbreking, verplaatsen de priesters de schijven van de ene naald naar de andere, overeenkomstig de vaste en onveranderlijke wetten van Brahma, volgens welke de dienstdoende priesters niet meer dan één schijf tegelijk mogen bewegen en geen schijf geplaatst mag worden op een naald die al een kleinere schijf bevat. Als de vierenzestig schijven van de naald waarop God ze bij de Schepping plaatste, overgebracht zullen zijn naar één van de andere, dan zullen de torens en de tempel en de priesters tegelijk tot stof vervallen en met een donderslag zal de wereld vergaan.”

Hoe lang moeten de priesters werken, als ze zonder ooit een fout te maken elke seconde één schijf overbrengen?

Je kan dit proces heel gemakkelijk recursief beschrijven:  Met n schijven: los het probleem op door de bovenste n-1 schijven naar pin B te brengen, met pin C als hulppin. Vervolgens wordt -n-de schijf naar pin C gebracht. Tot slot worden de eerste n-1   schijven van pin B naar pin C gebracht, met pin A als hulppin. Als we met u_n het aantal zetten noteren om n schijven van één pin naar een andere te zetten , dan geldt:

    \[u_n=2u_{n-1}+1\]

We kunnen dit omzetten naar het expliciet voorschrift u_n=2^n-1. De wereld zal dus 2^{64}-1 jaren bestaan, dat is zo ongeveer duizend miljard jaar. Als het verhaal klopt natuurlijk….

Als spel werd dit onder de naam Torens van Hanoi op de markt gebracht in 1863 door Edouard Lucas, onder de schuilnaam prof Claus.

Delen in Python

Een deling in Python:

  • In de verzameling der reeële getallen in [1]
  • In de verzameling van de gehele getallen in [2], kan je quotiënt en rest bepalen bij deling van a door b
    Een mooie toepassing is van een reeks getallen nakijken of ze even zijn of niet. Even getallen geven rest 0 bij deling door 2:

 

 

 

Punt van Torricelli

Zoek binnen een driehoek een punt T zodat de som van de afstanden van T tot de hoekpunten zo klein mogelijk is. Deze vraag werd door Fermat voorgelegd aan Evangelista Torricelli (1608-1647) en was bedoeld als een soort uitdaging. Vandaar dat men dit punt het punt van Torricelli of het punt van Fermat noemt. Torricelli was assistent van Galilei en volgde hem op als wiskundige aan het hof van groothertog van Toscane.

Hierboven zie je de constructie: construeer op twee zijden van de gegeven driehoek ABC gelijkzijdige driehoeken PAC en BCQ. Verbind Q met A en P met B. Het snijpunt van BP en AQ geeft het punt T. 

Om dit probleem te kraken, gebruiken we de driehoeksongelijkheid. Die zegt dat de kortste weg tussen twee punten de rechte lijn is door die punten. Neem nu een willekeurig punt P binnen de driehoek. en draai de driehoek CPB 60^\circ rond C zodat  P op Q en B op X wordt afgebeeld ( zie linker figuur). De driehoeken CPB en CQX zijn dan congruent en dus is |PB|=|QX| en |PC|=|CQ|. Maar dan is driehoek CPQ gelijkzijdig en is |PC|=|PQ|. Dan is de som S van de afstanden van P tot de hoekpunten van de gegeven driehoek gegeven door S=|AP|+|PQ|+|QX|. Volgens de driehoeksongelijkheid wordt S dan minimaal als A,P,Q en X op 1 lijn liggen. De positie van X hangt niet af van de keuze van P, dus moeten we P  zo kiezen dan A,P,Q en X op 1 lijn liggen. Uit de tekening is het duidelijk dat we P zo moet kiezen dat P op AX ligt en de hoek tussen CP en PX moet 60^\circ zijn. Dit komt neer op de constructie die hierboven werd uitgelegd.

Merk ook op dat de lijnstukken vanuit het punt van Torricelli T, naar de hoekpunten toe, onderling hoeken maken die allemaal gelijk zijn aan  120^\circ.

 

Een opgave over absolute waarden

Schrijf een Python programma dat de absolute waarde van een getal uit een gegeven lijst afdrukt als het getal kleiner is dan -5 of groter dan 2. Zoniet wordt er gewoon afgedrukt dat het getal niet werd uitgevoerd.

Antwoord Klik hier