Een alien

 

Op het bord staat de vergelijking

    \[x^3-19x^2+103x-247=0\]

Een alien komt binnen en roept: een drievoudige wortel! Net als wij heeft het buitenaards wezen 2 handen die onderling symmetrisch zijn. maar hoeveel vingers heeft hij (zij of het) aan elke hand?

antwoord

  • Als er een drievoudige wortel is dan is de vergelijking te schrijven onder de vorm (x-k)^3=0 of

        \[x^3-3kx^2+3k^2x-k^3=0\]

  • Nu is 247 geen derdemacht in ons tientallig stelsel, dus het gaat zeker al over een ander talstelsel. Noteer met b de basis van dat talstelsel.
  • De basis b moet even zijn, want onze alien heeft twee handen die symmetrisch zijn.
  • Verder moet b zeker groter zijn dan 10 want hij ziet het cijfer 9 staan.
  • Dus moet 3k=(19)_b of 3k=b+9. Hieruit volgt dat f=\frac{b+9}{3}.
  • Ook moet 3k^2=(103)_b of 3k^2=b^2+3. Als we hierin k vervangen door \frac{b+9}{3} vinden we 2b^2-18b-72=0. Bijgevolg is k=12 of k=-3. Dit laatste kan uiteraard niet.
  • Controleer nog of k ^3=(247)_b met b=12. Dit klopt.
  • Het buitenaards wezen heeft 6 vingers aan elke hand.

Mooiheid van getallen



De teller van elke breuk van je schrijven als n*111=n*3*37. Hierbij kan n elke waarde uit \{1,2,\cdots,9\} aannemen.

De noemer van elke breuk is dat n+n+n=3*n

Bijgevolg is elke breuk gelijk aan \frac{n*3*37}{3*n}=37.

 

Een wandeling

Tijdens een wandeling met zijn vrouw langs het Royal Canal in Dublin realiseerde William Rowan Hamilton dat hij de veralgemening van complexe getallen naar de driedimensionale ruimte, had gevonden. Hij was hierover zo opgetogen dat hij dit in een steen op de Brougham Bridge kerfde.

Hij had de quaternionen ontdekt.

Zij zijn geschikt voor de beschrijving van een rotatie in de driedimensionale ruimte die twee congruente voorwerpen in elkaar doet overgaan. Als dusdanig kunnen ze gebruikt worden bij videogames ( zoals bvb Tomb Raider)

Verwachtingswaarde

Hoeveel keer moet je gemiddeld een eerlijk muntstuk opgooien om 5 keer na elkaar kop te krijgen?

Antwoord

  • Noteer met e de gezochte verwachtingswaarde van het aantal keer opgooien. We noteren K voor kop en M voor munt.
  • Stel dat je bij de eerste poging M gooit. Hiervoor heb je \frac{1}{2} kans. Dan heb je nog steeds geen enkele keer K gehad en dus moet je gemiddeld nog e+1 keer opgooien voordat je er bent. Die 1 komt van de poging die je al hebt ondernomen.
  • Heb je eerst K en dan M, en daartoe heb je \frac{1}{4} kans, dan moet je weer van vooraf aan beginnen en heb je gemiddeld e+2 pogingen nodig. De 2 staat er omdat je al 2 keer gegooid hebt( KM) en dan helemaal opnieuw moet beginnen. 
  • Werk zo verder de gevallen KKM ,KKKM,KKKKM en KKKKK af
  • Ga zo verder en dan krijg je volgende vergelijking :
    e=\frac{1}{2}(e+1)+\frac{1}{4}(e+2)+\frac{1}{8}(e+3)+\frac{1}{16}(e+4)+ \frac{1}{32}(e+5)+\frac{1}{32}.5
  • Oplossen van deze vergelijking geeft e=62.