Periode decimaal getal

We kunnen elke breuk schrijven in zijn decimale vorm. Ofwel eindigt deze schrijfwijze ( niet repeterend) , zoals bij \frac{1}{4}=0,25 ofwel krijg je een deel dat zich steeds herhaalt ( repeterend). Neem bijvoorbeeld \frac{1}{}=0,333.... De periode is 3 ( het deel dat herhaald wordt ) en de lengte van de periode is 1.

Hoe kunnen we nu de lengte van die periode berekenen?

  • De teller van de breuk speelt geen rol bij de lengte van de periode. Vandaar dat we enkel  zullen werken met stambreuken \frac{1}{n}.
  • Een breuk is niet repeterend als de priemontbinding van de noemer enkel bestaat uit factoren 2 en 5.
  • De lengte van de deel na de komma, voor het repeterend deel: kijk naar het aantal twee en het aantal vijven in de priemfactor ontbinding en neem het grootste aantal van beiden. Zo is \frac{1}{35}=0,0285717285714... :  dus 1 cijfer voor het repeterend deel begint.
  • De lengte van de periode van \frac{1}{n} is de kleinste p waarvoor geldt dat n een deler is van 10^{p-1}.
  • Als n een priemgetal is dan is de lengte van de periode van \frac{1}{n} een deler van n – 1. Als de lengte juist n – 1 is, dan noemen we dat priemgetal een volledig herhalend priemgetal. Onder 1000 zijn dat het getallen 7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983.
  • Als n en m priem zijn en de lengtes van de periodes van \frac{1}{n} en \frac{1}{m} zijn respectievelijk p_1 en p_2, dan is de lengte van de periode van \frac{1}{nm} het kleinste gemene veelvoud van p_1 en p_2 of een veelvoud daarvan.
  • Als n een priemgetal is waarvan de lengte van de periode gelijk is aan p, dan is de lengte van  de periode van \frac{1}{n^k} gelijk aan p.n^{k-1}.

Vierkwadraten stelling

Elk priemgetal, gelijk aan 1 modulo 4, kan geschreven  worden als som van twee kwadraten. Dat een getal als som van twee kwadraten
geschreven kan worden is niet vanzelfsprekend. Bij een getal dat 3 (mod 4) is kan dat bijvoorbeeld niet. Daarentegen bleek dat wel elk getal getal te schrijven is als som van vier kwadraten.

Elk positief geheel getal kan geschreven worden als som van 4 kwadraten van gehele getallen.

    \[n=x_1^2+x_2^2+x_3^2+x_4^2\]

Deze stelling was al gekend door Diophantus; Euler heeft 40 jaar gezocht naar een bewijs ervan, maar het was Joseph-Louis Lagrange ( 1736 – 1813)  die in 1772 het eerste bewijs formuleerde.

Het kan zelfs in veel gevallen met drie kwadraten. Legendre ( 1752 – 1833) beweerde dan elk getal, tenzij van de vorm 4^k(8m+7) , te schrijven is als som van drie kwadraten.

Er bestaat zelfs een mogelijkheid  om  het totaal aantal manieren  te berekenen, waarop een gegeven positief geheel getal n  kan worden geschreven als de som van vier kwadraten. Als n oneven is moet je 8 keer de som van zijn delers nemen en als n even is 24 keer de som van zijn oneven delers. Merk hierbij op dat (x_1,x_2,x_3,x_4) geordend is en dat we gehele oplossingen zoeken ; dus ook rekening houden met negatieve getallen.

Nog een raadseltje

De pastoor geeft zijn parochieassistente een probleempje om op te lossen: “Er zijn drie parochianen waarvan het product van de ouderdommen gelijk is aan 2450. De som van hun ouderdommen is het dubbel van jouw leeftijd.” De assistente zegt: “Ik weet het nog niet.” Dan zegt de pastoor: “De drie parochianen zijn alle drie jonger dan ik.’ “Nu weet ik het,” roept de parochieassistente. Welke zijn de leeftijden van de drie parochianen?

Antwoord Klik hier

Hoogtedriehoek

De hoogtedriehoek van een driehoek ABC is de driehoek gevormd door de  voetpunten van de drie hoogtelijnen van deze driehoek.

Enkele speciale eigenschappen:

  • Het hoogtepunt van driehoek ABC is het middelpunt van de ingeschreven cirkel van zijn hoogtedriehoek.
  • Van alle driehoeken ingeschreven in driehoek ABC(d.i de hoekpunten liggen op de zijden  van driehoek ABC) heeft de hoogtedriehoek de kleinste omtrek.
    Dit wordt ook wel eens het probleem van Fagnano genoemd naar Giovanni Fagnano die dit probleem stelde in 1775.

Toepassingen op stelling van Fermat

Nog even in herinnering brengen, de kleine stelling van Fermat luidt: Als p een priemgetal is Ena en p onderling ondeelbaar zijn dan is

    \[a^{p-1}\equiv 1 \mod p\]

 of

    \[a^p \equiv a \mod p\]

 

Nu een paar toepassingen:

  • n^{13}-n is altijd deelbaar door 2730. Bewijs.
    Antwoord Klik hier


  • 5^p-2*3^p+1 is een p-voud als p priem is. Bewijs. 
    Antwoord Klik hier



  • 1492^n-1771^n-1863^n+2141^n is steeds deelbaar door 1946. Bewijs dit  en volgende opgaven zelf!
  • n ^2+2n+12 is nooit deelbaar door 112. Tip : vul alle waarden van n in modulo 7.
  • Als n oneven is, dan eindigt de decimale schrijfwijze van 2^{2n}(2^{2n+1}-1) steeds op 28.
  • Voor welke n is n^{n+1}+(n+1)^n een drievoud?