Eenheden in ZC_n

In dit artikel beschrijven we hoe we eenhedengroepen van \mathbb{Z}C_n berekenen. We verdelen het werk in 3 delen: n priem, n een priem macht en n geen priem macht. In elk van de gevallen rekenen we twee voorbeelden volledig uit, dikwijls op verschillende manieren. Met de beschreven technieken hopen we , voor elke waarde van n, de eenheden groepen te kunnen beschrijven.

Regelmatige veelvlakken

Een regelmatig veelvlak is een veelvlak met volgende eigenschappen:

  • Alle zijvlakken zijn congruente regelmatige veelhoeken.
  • In elk hoekpunt komen evenveel zijvlakken samen.
  • Ze zijn convex
  • De hoeken tussen de zijvlakken zijn steeds hetzelfde.
  • Voor het aantal ribben (R), het aantal grensvlakken (G) en aantal hoekpunten (H) van een convex lichaam geldt de formule van Euler: R + 2 = G + H

Er zijn er 5; ze worden ook wel eens de Platonische lichamen genoemd naar Plato(427 BC – 347BC), die ze het eerst beschreef.

Plato bracht de vijf regelmatige veelvlakken ook in verband met de vijf kosmische bouwstenen van de wereld: vuur, lucht, water, aarde en hemelmaterie.

Verbindt men de middens van de zijvlakken van een veelvlak met elkaar, dan vormen de verbindingslijnen de ribben van een ander veelvlak. Een viervlak blijft een viervlak, maar een kubus wordt een octaëder en omgekeerd. Een dodecaëder wordt een icosaëder en omgekeerd. De kubus en de octaëder zijn het duale veelvlak van elkaar, de dodecaëder en de icosaëder ook.

De huwelijksstelling van Hall

Zes vrouwen vallen elk op een aantal vrijgezelle mannen. Kunnen de zes vrouwen met de zes mannen worden gekoppeld, zó dat elke vrouw een man van haar keuze trouwt?

In sommige gevallen is het eenvoudig om te zien dat er geen oplossing mogelijk is. Als er een dame bij is die niemand leuk vindt, lukt het niet. Ook als er twee vrouwen zijn die enkel één en dezelfde man willen, loopt het mis.

Kan het met de volgende keuze?
Een nodige en voldoende voorwaarde op het bestaan van een oplossing is dat iedere k dames samen met tenminste k  verschillende mannen willen trouwen. Hierbij is 1 \leq k\leq6. Omdat de dames a,c,d en f samen maar drie verschillende mannen willen huwen, namelijk de nummers 2,3 en 6, is het dus onmogelijk alle zes dames uit te huwelijken!

Deze stelling, die dateert uit 1933, werd bewezen door de Engelse wiskundige Philip Hall ( 1904-1982).

Als het zo is dat we niet alle dames kunnen koppelen, dan kunnen we ons wel de vraag stellen: wat is het maximaal aantal dames dat kan gekoppeld worden?

Hiervoor vertalen we het probleem naar een probleem met grafen: Voor iedere vrouw is er een bijhorend punt in A en voor iedere man is er een punt in B. We trekken een lijn tussen een vrouw en een man, als zij met hem wilt trouwen.

De resulterende graaf heet bipartiet omdat de punten zijn opgedeeld in twee groepjes en lijnen altijd punten uit verschillende groepen verbinden. Een aantal lijnen noemt men een matching als geen twee lijnen eenzelfde eindpunt hebben. Een uithuwelijking is dus eigenlijk een matching. In het rood staat hierboven een matching met 4 lijnen. Een betere matching wordt gegeven door volgende figuur, waarin 5 vrouwen kunnen worden uitgehuwelijkt.

Nootje 11

Gegeven is (x+5)^2+(y-12)^2=196. Bepaal de minimumwaarde van  x^2+y^2.

Antwoord Klik hier

De rij van Padovan en het plastisch getal

Gelijkaardig aan de rij van Fibonacci, kunnen we ook de rij van Padovan definiëren, als de rij met p_1=p_2=1 en

    \[p_n=p_{n-2}+p_{n-3}\]



De rij van Padovan is vernoemd naar de schrijver en architect Richard Padovan die zijn ontdekking toegeschreef aan de Nederlandse architect Hans van der Laan . Hieronder zie je een spiraal van gelijkzijdige driehoeken waarvan de lengten der zijden gelijk zijn aan de de getallen uit de rij van Padovan.

Als we de rij bestuderen van de quotiënten van twee opeenvolgende getallen uit de rij van Padovan, bekomen we volgende rij : 2,1,\frac{3}{2},\frac{4}{3},\frac{5}{4},\frac{7}{5},\frac{9}{7},.... We vermoeden dat deze rij convergeert naar een limiet L. 
a_n=\frac{p_n}{p_{n-1}}=\frac{p_{n-2}}{p_{n-1}}+\frac{p_{n-3}}{p_{n-1}}=\frac{p_{n-2}}{p_{n-1}}+\frac{p_{n-3}}{p_{n-2}}\frac{p_{n-2}}{p_{n-1}}. Dus is a_n=\frac{1}{a_{n-1}}+\frac{1}{a_{n-2}}\frac{1}{a_{n-1}}. In de limiet wordt dit L=\frac{1}{L}+\frac{1}{L^2}. Bijgevolg voldoet de limiet L aan de betrekking

    \[L^3-L-1=0\]

Zo vinden we voor L de benaderende waarde 1,3247.

Dit getal noemen we het plastisch getal. Het plastisch getal heeft met de gulden snede nog meer eigenschappen gemeen, maar sommigen gaan nog verder en dichten aan deze getallen verregaande eigenschappen toe omtrent schoonheid.