Deelbaarheid door 3, 7, 9 en 11

Iedereen weet dat een getal deelbaar is door 2 als het laatste cijfer, in zijn decimale notatie, even is.  Want een getal n kan je schrijven als n=10k+u, waarbij u het laatste cijfer is in de decimale notatie van n. Het is duidelijk dat 2|n als en slechts als 2|u. Hetzelfde geldt voor 5.

Elk getal n  is te schrijven  als n=100k+u, waarbij u het getal is gevormd door de laatste 2 cijfers van n. Bijgevolg is n deelbaar door 4 of 25 als de laatste 2 cijferss deelbaar zijn door 4 of 25.

Hoe kunnen we nu zien of een getal deelbaar is door 3, 9 of 11? Bekijken we eerst een stelling over congruenties met veeltermen met gehele cëfficiënten:

Stel f(x)=\sum_{k=0}^nc_kx^k met c_i \in \mathbb{Z}. Als a \equiv b mod m, dan is f(a) \equiv f(b) mod m.

Neem nu a=\sum_{k=0}^na_k10^k, de decimale schrijfwijze van het getal a en noteer s=\sum_{k=0}^na_k en t=\sum_{k=0}^n(-1)^ka_k. Het is duidelijk dat a=f(10) met f(x)=\sum_{k=0}^na_kx^k en dat s=f(1). Omdat 10 \equiv 1 mod 9, geldt volgens vorige stelling dat f(10) \equiv f(1) mod 9 of met andere woorden : een getal is deelbaar door 9 als de som van haar cijfers deelbaar is door 9. Analoog voor deelbaarheid door 3. Het bewijs voor deelbaarheid door 11 volgt uit het feit dat 10 \equiv -1 mod 11 en t=f(-1).

Besluit:
Een getal is deelbaar door 3 of 9 als de som van de cijfers van het getal deelbaar is door 3 of 9.
Een getal is deelbaar door 11 als t=\sum_{k=0}^n(-1)^ka_k deelbaar is door 11.

 

Een toemaatje : deelbaarheid door 7: Omdat 10^3 \equiv -1 mod 7 kan je  deelbaarheid door 7 als volgt vinden: Verdeel het getal van rechts naar links in groepjes van 3. Voor zie elk groepje alternerend met een + en – teken. Een getal is deelbaar door 7 las de som van die getallen deelbaar is door 7. Zo is bijvoorbeeld  2 345 678 902 deelbaar door 7 omdat 902 -678 + 345 – 2 = 567 en dat is deelbaar door 7 .

Ongelijkheid van Jensen

Voor elke functie f waarvan de grafiek ‘hol’ naar onder is , of dus convex (d.w.z dat het verbindingstuk van twee punten van de grafiek altijd boven de grafiek ligt ) geldt volgende ongelijkheid:

    \[f(\dfrac{a_1+a_2+\cdots+\a_n}{n} )\leq \dfrac{f(a_1)+f(a_2)+\cdots+f(a_n)}{n}\]

Deze ongelijkheid staat bekend als de ongelijkheid van Jensen, naar de Deense wiskundige Johan Willem Ludwig Valdemar Jensen (1859-1925).

Uiteraard is er een analoge formule voor concave functies.

Voorbeeld: Als a,b en c positieve hoeken zijn met een som gelijk aan \frac{\pi}{2}, dan is \tan a+ \tan b+\tan c \geq \sqrt{3}.

Tussen 0 en \frac{\pi}{2} is de tangensfunctie convex, dus geldt er volgens Jensen dat \tan (\dfrac{a+b+c}{3}) \leq \frac{1}{3}( \tan a+\tan b+\tan c). Hieruit volgt dat \frac{1}{3}( \tan a+\tan b+\tan c) \geq \tan(\frac{\pi}{6})=\frac{\sqrt{3}}{3}. Vermenigvuldigen met 3 geeft het gevraagde antwoord.

 

Dissectie van een veelhoek

Kan je een veelhoek in stukjes knippen zodat je er een andere veelhoek mee kan bouwen door al de stukjes terug aan elkaar te plakken?  In onderstaand voorbeeld wordt een driehoek getransformeerd in een vierkant.

De stelling van  Wallace–Bolyai–Gerwien zegt dat dit mogelijk is als de twee veelhoeken dezelfde oppervlakte hebben. Het was Farkas Bolyai die het probleem als eerste formuleerde en gerwien bewees de stelling in 1833. Maar Wallace eigenlijk was het Wallace  die ze als eerste bewees in 1807.

Het probleem kan ook gesteld worden in drie dimensie voor veelvlakken en is alzo bekend als derde probleem van Hilbert. Het was Max Dehn die in 1900 bewees dat de stelling niet klopt voor veelvlakken.

Opgave 22

Gegeven: A(x)=x^4+4x^3+8x^2+4x+16. Zoek alle getallen x waarvoor A(x) een volkomen kwadraat is.

Antwoord Klik hier

Opgave 21

Maak met de cijfers 3,4,5,6,7,8 en 9 een getal X van 4 cijfers en een getal Y van 3 cijfers zodat het product X.Y zo groot mogelijk is.

Antwoord Klik hier