Een cijferraadsel

Als a679b een getal is van 5 cijfers en bovendien deelbaar is door 72, bepaal dan a en b.

Dit is een eenvoudig voorbeeld van een cijferraadsel. De onbekenden a en b stellen cijfers voor: 0 , …, 9. In dit raadsel is er een voorwaarde over deelbaarheid gegeven om het probleem te kunnen oplossen.

  • Een getal is deelbaar door 8 als de laatste drie cijfers deelbaar zijn door 8, dus moet 79b deelbaar zijn door 8. de enige oplossi,ng is b = 2.
  • Een getal is deelbaar door 9 als de som van de cijfers deelbaar is door 9, dus als a +6 +7 +9 +2 deelbaar is door 9.
  • Dus moet a + 6 een veelvoud zijn van 9. dan is a = 3 de unieke oplossing.
  • Besluit a = 3 en b = 2.
  • Controle 36792 = 72 . 511

The game of ‘Life’

Game of Life was voor het eerst geïntroduceerd door de Britse wiskundige John Conway in 1970. Het werd gepubliceerd in het tijdschrift Mathematical games van Martin Gardner.

Het is eigenlijk een cellulaire automaat en bestaat uit een één- of meer-dimensionaal raster van cellen met elk een eindig aantal toestanden. Een volgende toestand wordt door toepassing van een gegeven verzameling regels berekend uit de huidige toestand van de cel en die van zijn directe buren. Door het herhaald toepassen van dezelfde regels ontstaan vaak spontaan patronen die nu en dan grote gelijkenis vertonen met wat in de natuur wordt aangetroffen, zoals in de groeipatronen van kristallen en in kolonies koralen.

Het spel wordt gespeeld op een oneindig groot schaakbord waar elke ‘cel’ altijd 8 buren heeft. De basis regels zijn:

  • Een levende cel met 0 of 1 levende buur sterft van eenzaamheid.
  • Een levende cel met 4 of meer buren sterft als gevolg van overbevolking.
  • Een levende cel met 2 of 3 buren overleeft naar de volgende generatie.
  • Een dode cel met juist 3 buren wordt levend.

Er bestaan verschillende ‘levenstypes’, zoals bijvoorbeeld:

  • stillevens: stabiele eindige , niet lege configuraties zoals bijvoorbeeld :
  • periodische levensvormen ( oscillatoren) waar een bepaald patroon zich steeds herhaalt:
  • een glijder: een levensvorm die zich verplaatst over het schaakbord:

Je kan uiteraard zelf een aantal configuraties verzinnen…

Nog een luciferspel

Een willekeurig aantal lucifers is op willekeurige wijze verdeeld over twee stapels. Twee spelers nemen om de beurt lucifers weg: ofwel van één van de hopen 1,2,of 3 lucifers ofwel van beide hopen een zelfde aantal lucifers en dan ook 1,2 of 3. De speler die de laatste lucifer(s) wegneemt, wint.

We zoeken naar gunstige situaties. Met (a,b) noteren we de situatie waarbij er a lucifers op één hoop liggen en b lucifers op de andere stapel. De situaties (a,b) en (b,a) zijn identiek.

  • Met 1 lucifer hebben we enkel de situatie (1,0) en die is natuurlijk ongunstig want de tegenstrever kan gewoon die lucifer wegnemen en wint alzo het spel.
  • Met twee lucifers heb je (2,0), en (1,1) en beiden zijn ongunstig .
  • Met 3 lucifers heb je (3,0) en (2,1). De eerste situatie is zeker ongunstig maar (1,2) of (2,1) is wel degelijk gunstig, want wat de tegenstrever ook doet, hij komt terecht in een ongunstige toestand.
  • De situaties (2,2)  en (3,1) zijn ongunstig. Bij de eerste situatie kan de tegenstrever gewoon alles wegnemen en in het tweede geval kan hij door 1 lucifer weg te nemen terechtkomen in de winnende positie (2,1). Verder  is (4,0) uiteraard gunstig.

De situaties (4k,4l) en (4k+1,4l+2) zijn altijd gunstig. De winnende strategie bestaat erin elke gegeven spelsituatie om te zetten in een gunstige situatie. In sommige spelsituaties heb je de keuze  tussen twee of zelfs drie goede zetten. Zo kan je bijvoorbeeld (8,9) omzetten in de winnende situaties (8,8) en (6,9) door respectievelijk 1 lucifer weg te nemen van de stapel met 9 lucifers ofwel door er 2 weg te nemen van de andere stapel. Kies dan nu eens de ene en dan weer de andere voortzetting om de spelstrategie minder transparant te maken voor de tegenstrever. Als de winnende spelstrategie niet kan worden uitgevoerd, bestaat de optimale strategie erin 1 lucifer weg te nemen van de hoop met het meest aantal lucifers.

De Nederlandse wiskundige W.A. Wythoff  (6 oktober 1865 – 21 mei 1939) publiceerde in 1904 een analyse van dit spel.

Spelstrategie: gunstige en ongunstige situaties

Aan de hand van een eenvoudig spel, proberen we enkele begrippen betreffende spelstrategiën uit te leggen:

Een willekeurig aantal lucifers n ligt op één hoop. Twee spelers nemen om de beurt 1,2 of 3 lucifers weg. De speler die de laatste lucifer(s) neemt, die wint.

Het is duidelijk dat men verliest als, na jouw beurt, er voor de tegenspeler nog 1,2 of 3 lucifers overblijven. Immers hij/zij kan die gewoon wegnemen en zo het spel winnen. Als je echter je tegenspeler kan confronteren met 4 lucifers dan win jij. Want de andere speler moet 1,2 of 3 lucifers wegnemen en daarna neem jij gewoon de rest weg en je wint. Als na je beurt  er 5,6,of 7 lucifers overblijven dan kan de tegenstreven er zoveel wegnemen dat er juist 4 overblijven en dan komt hij/zij in een gunstige situatie terecht. Met andere woorden situaties met 4,8,12,…zijn dus gunstig.

We bekijken dus de spelsituatie na de zet van een speler. We noemen de situatie gunstig als de speler door zijn zet zijn eigen winst vastlegt. In vorig voorbeeld zijn alle viervouden dus gunstige sitiuaties. Een ongunstige situatie kan zowel tot winst als verlies leiden. Ze leidt meestal tot verlies, tenzij de tegenspeler een fout maakt. De winnende spelstrategie bestaat erin als eerste in een gunstige situatie terecht te komen en na elke zet van de tegenstrever de ontstane ongunstige stituatie weer om te buigen in een gunstige situatie.

Het is natuurlijk mogelijk dat de tegenstrever op een moment zelf in een gunstige situatie verzeilt en dan is elke zet voor jou verkeerd. Toch kan je nog een optimale spelstrategie ontwikkelen gebaseerd op het feit dat de tegenstrever een fout kan maken. Dit is waarschijnlijker als de situatie ingewikkeld wordt.  Daardoor wordt meestal een minimum zet gedaan zodat er veel mogelijkeheden overblijven om te kiezen en dus heb je zo een grotere kans geschapen om in de fout te gaan. In het besproken spel zou je dan 1 lucifer wegnemen.

Puzzels door de eeuwen heen

Puzzels, raadsels, denkspelen hebben de mensheid altijd al gefascineerd Archeologische opgravingen hebben hun aanwezigheid kunnen vaststellen bij vrijwel alle beschavingen. Uit de verre oudheid  kennen we onder andere het koningsspel van Ur en het Senet bordspel uit Egypte:

 

 

 

 

 

 

Oorspronkelijk was de functie van die denkspelen eerder mythisch-religieus. Bordspelen konden aanwijzingen geven over het verloop van een oorlog. Via tekens kon de Godheid communiceren met de mensheid. Vooral de getallen hadden dan een magische betekenis. Denk maar aan het magische vierkant van Lo Shu. Voor de Chinezen waren de oneven getallen mannelijk en was het kruis het symbool van mannelijkheid en goddelijkheid.

In de loop  van de geschiedenis is de klemtoon evenwel verschoven en is men het spel meer gaan bekijken als een aangenaam tijdverdrijf. De spelletjes waren fascinerend omwille van de uitdaging die er in school. Ook beroemde wiskundigen hebben zich ermee bezig gehouden: Alcuïnus met het probleem van de wolf, de geit en de kool; Fibonacci met het konijnenprobleem, Gauss met de verplaatsing van de dames op een schaakbord,…

Nog later werden vele intellectuele spelletjes uit de recreatieve sfeer gehaald  en werden onderworpen aan een grondige wiskundige analyse. Neem het voorbeeld van de 7 bruggen van Königsberg met de grafentheorie of het vierkleurenprobleem. De banden tussen recreatieve en ernstige wiskunde werden aangehaald en ingewikkelde wiskundige technieken werden gebruikt bij de analyse van schijnbaar eenvoudige problemen.