Hoe oud?

Lies zegt aan Veerle dat ze nu drie opgroeiende kinderen heeft waarvan het product van hun leeftijden 72 . De som is haar huisnummer . Veerle kan het antwoord toch niet geven tot Lies eraan toevoegt dat haar oudste kind graag naar Pink Floyd luistert. Hoe oud zijn de kinderen?

  • Veerle zoekt alle ontbindingen van 72 = 2^3.3^2 in 3 factoren. Omdat de som Veerle geen informatie geeft moet die som 14  zijn omdat dit twee keer voorkomt als som: 14 = 2 + 6 +6 = 3 + 3 +8 .
  • 2,6 en 6  kan  niet omdat er dan geen oudste kind is.
  • Dus de kinderen zijn 3 , 3  en 8 jaar oud.

Vierkanten en rechthoeken op een schaakbord

Hoeveel vierkanten en rechthoeken kan men vormen op een n x n schaakbord?

  • Nemen we eerst het aantal vierkanten. We noteren V(n) voor het aantal vierkanten dat je kan tekenen op een nxn bord. Voor de 1×1 vierkanten heb je n mogelijke verticale posities en n horizontale, dus n^2 mogelijke vierkanten. Voor de 2×2 vierkanten heb je n – 1 verticale en horizontale mogelijke plaatsingen , dus (n-1)^2 mogelijkheden. Uiteindelijk is het totaal aantal vierkanten gelijk aan n^2+(n-1)^2+\cdots+2^2+1^2

        \[V(n)=\frac{n(n+1)(2n+1)}{6}\]

  • Met R(n) noteren we het aantal rechthoeken dat je kant tekenen op een nxn schaakbord. Voor een rechthoek heb je 2 verticale en twee horizontale lijnen nodig. Er zijn n+1 verticale en n+1 horizontale lijnen op een schaakbord. Om de verticale lijnen te kiezen heb je dus {n+1}\choose{2} =\frac{n(n+1)}{2}  mogelijkheden. Idem voor de keuze van de twee horizontale lijnen. Dus

        \[R(n)=\frac{n^2(n+1)^2}{4}\]

  • Voor een 8×8 schaakbord heb je dus 204 vierkanten en 1296 rechthoeken. Van die rechthoeken zijn er 1092 die geen vierkant zijn.

Opgave 29

n spelers spelen n spelen en winnen om de beurt. Telkens een speler wint, verdubbelt hij het bezit van zijn n-1 tegenspelers. Op het einde hebben ze allemaal evenveel. Hoeveel hadden ze in het begin?

Antwoord Klik hier

Ravi substitutie

De Ravi substitutie is een techniek die erg belangrijk is bij het oplossen van meetkundige ongelijkheden. Ze luidt als volgt:

Als a, b en c zijden van een driehoek zijn dan bestaan er positieve getallen x,y en z zodat 

    \[a = y + z,  b = z + x \text{ en } z = x + y\]

Het bewijs hiervan is niet zo lastig. Als a ,b en c zijden zijn van een driehoek, dan kunnen we de ingeschreven cirkel tekenen en uit onderstaande tekening volgt het gestelde.

Omgekeerd, zijn a, b en c de zijden van een driehoek als elke zijde kleiner is dan de som van de twee andere zijden. En dat is evident omdat x,y en z positief zijn.

Voorbeeld: Als a, b en c de zijden van een driehoek zijn bewijs dan dat

    \[abc \geq (b+c-a)(c+a-b)(a+b-c)\]

We gebruiken de Ravi substitutie en we moeten dan bewijzen dat :

    \[(y+z)(z+x)(x+y)\geq xyz\]

  of

    \[x(y-z)^2+y(z-x)^2+z(x-y)^2\geq 0\]

Omdat x,y en z positief zijn is dit correct.

De naam Ravi substitutie komt van de Canadese wiskundige Ravi D. Vakil, (geboren in 1970) die deze reeds gekende substitutie als één van zijn favoriete methodes gebruikte bij het oplossen van ongelijkheden. Hij was lid van het Canadese team bij de Internationale Wiskunde Olympiade in 1986,1987 en 1988 en behaalde zilver en twee maal goud (éénmaal met een perfecte score).

Wiskunde en wijn

Een wijnroeier is iemand die met een peilstok ( wijnroede genaamd) de hoeveelheid wijn in een vat meet.  Het beroep van wijnroeier kwam in Europa voor tot in de negentiende eeuw.

Een gelijkaardig probleem bestaat erin met een peilstok de hoeveelheid mazout in een tank te meten. Laten we veronderstellen dat het vat cilindrisch is. Het heeft de straal R en de lengte l. We zoeken nu een relatie tussen de inhoud I van de nog aanwezige wijn of olie en de hoogte h, waarover de lat door de vloeistof bevochtigd wordt.

We berekenen daartoe eerst de oppervlakte O van het cirkelsegment ACB.  Dit is het verschil van de oppervlakten van de sector MACB en  de driehoek MAB.

Door gebruik te maken van gekende formules vonden we dat deze oppervlakte gelijk is aan \alpha R^2-\frac{1}{2}R^2\sin 2\alpha.
Bijgevolg is de inhoud van de aanwezige vloeistof gelijk aan

    \[I=\frac{1}{2}lR^2(2\alpha-\sin 2\alpha)\]

Het verband tussen I en h is moeilijk uit te drukken. We weten wel dat h=R(1-\cos \alpha). We gaan een paar h waarden nemen en daarvoor \alpha en I berekenen en dat in grafiek zetten of een meetlat maken.

Het was J.Kepler, die naar aanleiding van het bezoek van een wijnroeier, zijn Nova stereometria doliorum (1615) en  Messekunst Archimedis (1616) schreef waarin hij de inhoud van bepaalde omwentelingslichamen bepaalde ( zonder integraalrekening!) en de praktische  toepassing ervan bij het wijnroeien.