Koffiekop kromme

We weten dat lichtstralen die invallen op een parabolische spiegel en die evenwijdig zijn met de as, worden weerkaatst door het brandpunt van de parabool. Maar wat gebeurt er als de lichtstralen invallen op een gekromd oppervlak dat cilindrisch is? Dat effect krijg je als de zon op je tas koffie schijnt, zoals je hierboven ziet. Wat je ziet is een brandkromme of kaustiek.

Proberen we dit eens grafisch voor te stellen: teken voldoende lichtstralen ( gele verticale lijnen) en hun weerkaatsingen ( rode lijnen )
Hoe ontstaat die figuur nu? Neem een stukje van de tekening in detail:
Neem een willekeurig verticale rechte. Die snijdt de kaustiek in 1 bepaald punt. In de rechtse tekening zie je ook een aantal van de weerkaatste stralen in de omgeving van dit punt. Die snijden de verticale in een punt dat steeds hoger ligt dan het snijpunt van die verticale met de brandkromme. Het punt op de brandkromme is dus eigenlijk het minimum van de y-waarden van de snijpunten van de weerkaatste stralen met de verticale.

Rekenen nu:

  • Geef de verticale de vergelijking x = a en veronderstel dat de cirkel straal 1 heeft.
  • De invallende straal door P(cos t, sin t) wordt weerkaatst door
    Q( cos 3t, sin 3t). Dit is duidelijk door gebruik te maken van de gelijkheid van de basishoeken van een gelijkbenige driehoek en het feit dat invalshoek en brekingshoek gelijk zijn.
  • De richtingcoëfficiënt van de weerkaatste straal is \dfrac{\sin 3t-\sin t}{\cos 3t-\cos t}=-\cot 2t.
  • De vergelijking van de weerkaatste straal is dan: y-\sin t=-\cot 2t(x-\cos t) en snijdt de verticale dus in het punt met y-waarde

        \[y=\sin t -\cot 2t(a-\cos t)\]

  •  We zoeken nu naar het minimum van y als t varieert. Uit y’ = 0 volgt na wat rekenwerk dat 

        \[a=\frac{1}{4} \cos 3t +\frac{3}{4} \cos t\]

  • De bijhorende y-waarde is dan y=\frac{1}{4} \sin 3t +\frac{3}{4} \sin t.
  • De parameter vergelijking van de brandkromme is dan gegeven door x=\frac{1}{4} \cos 3t +\frac{3}{4} \cos t, y=\frac{1}{4} \sin 3t +\frac{3}{4} \sin t.

Pseudopriemen

De kleine stelling van Fermat leert ons dat voor een priemgetal p geldt dat

    \[a^{p-1} \equiv 1 \mod p\]

of voor getallen a die onderling ondeelbaar zijn met p: a^p \equiv a \mod p.

De stelling van Fermat is niet omkeerbaar. Inderdaad is  2^{340} \equiv 1 \mod 341 en 341 = 11 \times 31. In de vijfde eeuw voor onze jaartelling wisten de Chinezen al dat uit p priem volgt dat 2^{p-1} \equiv 1 \mod p. Zij waren ook overtuigd van het omgekeerde. Ook Leibniz was daarvan overtuigd. Slechts in 1819 vond F. Sarrus bovenvermeld tegenvoorbeeld.

We noemen 341 een pseudopriem t.o.v. de basis 2.

Een Carmichael getal is een getal  p dat niet priem is en waar voor alle a die onderling ondeelbaar zijn met p, toch geldt dat a^{p-1} \equiv 1 \mod p. Zo is bijvoorbeeld 561 het kleinste Carmichael getal. De volgende Carmichael getallen zijn  1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841 en  29341. Pas in 1994 werd bewezen dat er oneindig veel Carmichael getallen zijn.

De naam Carmichael getal komt van de Amerikaanse wiskundige  Richard David  Carmichael ( 1979-1967) die het bestaan ervan introduceerde in 1910. Een andere naam voor deze getallen is absolute pseudopriemen

Het probleem van Fagnano

Gegeven is een scherphoekige driehoek ABC. Zoek een ingeschreven driehoek DEF  met de kleinst mogelijke omtrek.

Dit probleem werd in 1775 gesteld door de Italiaanse wiskundige J.F.Fagnano.

Eén van heuristieken gebruikt bij problem solving leert ons het probleem aan te pakken voor een speciaal geval: neem het  punt D  vast. Spiegel vervolgens D rond de twee aanliggende zijden tot S en T. 

De omtrek van DEF is gelijk aan de lengte van SFET. De kleinst mogelijke omtrek krijgen we dus als als SFET zo klein mogelijk is, dus als we F en E nemen op de rechte ST.
Merk op dat de driehoek SAT gelijkbenig is en dat de tophoek SAT gelijk is aan het dubbele van de hoek BAC. Aangezien het lijnstuk [ST] de basis is van een gelijkbenige driehoek met een vaste tophoek, zal deze basis zo klein mogelijk zijn als de lengte van de benen [AS] en [AT] zo klein
mogelijk is. We moeten het punt D dus zo kiezen dat [AS] en [AT] zo klein mogelijk zijn. Het is duidelijk dat |AS| = |AD| = |AT|. We moeten dus D op [BC] kiezen zodat|AD| zo klein mogelijk is. Bijgevolg moet D het voetpunt zijn van de loodlijn uit A op [BC] . 

Natuurlijk kunnen we in plaats van met D te beginnen ook via E of F werken. Zo krijgen we als oplossing de voetpuntsdriehoek:

 

 

Nootje 5

Zoek het bereik van f(x) = G(x) + G(2x), waarbij G(x) het grootste geheel getal is kleiner of gelijk aan x.

Antwoord Klik hier