Griekse wiskunde deel 6

Over de mens Euclides is weinig bekend, We weten dat hij rond 300 v.C. wiskunde doceerde in het museion van Alexandrië. Gevormd in de scholen van Plato en Aristoteles, is hij dus één van de Griekse intellectuelen die naar Alexandrië toestroomden om er beroepsgeleerde te worden. 

Uit de analyse van zijn werken is vrij duidelijk te zien dat Euclides geen groot wiskundige was, maar wel een buitengewone didacticus. Zo ligt het geniale van zijn Elementen niet zozeer in de inhoud, want die is afkomstig van zijn grote voorgangers Archytas, Theatetus en Eudoxos. Maar het bijzondere is de gepaste keuze van de volgorde, waar de verschillende onderdelen worden behandeld. Een vrij omvangrijk eerste deel is ook toegankelijk voor middelmatige leerlingen, de moeilijke delen komen pas later aan de beurt.

De elementen staat zeker op de lijst van de boeken die het grootst aantal uitgaven en vertalingen hebben gekend. Deze bestseller omvat 13 boeken, waaraan door latere wiskundigen nog 2 boeken zijn toegevoegd. ( o.a. een boek over regelmatige veelvlakken). De boeken 1 tot 4 handelen over de meetkunde van de rechte, de driehoek en de cirkel. Boeken 5 en 6 zijn gewijd aan de leer van de evenredigheden en de gelijkvormige figuren. In boeken 7,8 en 9 gaat het over de natuurlijke getallen. Boek 10 bestudeert de irrationale getallen. Tenslotte gaat het in de boeken 11,12 en 13 over de meetkunde van de ruimte en de 5 regelmatige veelvlakken.

De gewichten van Bachet

Dit probleem werd 400 jaar geleden aangekaart door de Franse wiskundige Claude Gaspard Bachet de Méziriac(1581-1638): wat is de kleinst mogelijke verzameling gewichten waarmee je iedere gehele kilo van 1 tot 40 kan afwegen?

Eigenlijk staat dit raadsel in het liber Abaci van Leonardo Pisano(1202). Bachet was een dichter, vertaler en tolk en was de schrijven van het raadselboek Problèmes plaisants et délectable qui se font par les mombers(1612). In dit standaardwerk voor creatieve wiskunde staat onder andere dit probleem.

Elk natuurlijk getal tussen 1 en 40 kan je in het drietallig talstelsel schrijven. Daarvoor heb je enkel de getallen 1,3,9 en 27 nodig. Dit zijn onze basisgewichten. Maar hoe kunnen we dan alle gewichten tussen 1 en 40 afwegen?

  • In de drietallige schrijfwijze komen alleen nullen en enen voor: neem bvb. 13=(111)_3=1+3+9. Dus kan je met de gewichten 1,3,9 een gewicht van 13 afwegen.
  • Wat te doen als er een 2 voorkomt in de drietallige schrijfwijze? Neem bvb. (121)_3=1+2*3+9=1+(3-1)*3+9=1-3+2*9=1-3+(3-1)9=1-3-9+27=16  Je kan dit dan schrijven als 1+27 = 16 +3 +9. Leg dan de gewichten 1 en 27 op de linker schaal en de gewichten 3,9 samen met het gewicht 16 op de rechterschaal.
  • Omdat de som van 1,3,9 en 27 juist 40 is kan je dus zo elk gewicht tussen 1 en 40 afwegen!

Een getal raden

Je mag  een getal kiezen  uit de verzameling {0,1,2,…,15}. Hoe kan ik met een minimum aantal ja/neen vragen dit getal raden?

Antwoord Klik hier

Vierkantswortels

Vierkantswortels zijn al eeuwenlang bekend. De Rhindpapyrus verwijst al in 1650 v.Chr. naar vierkantswortels, maar dat is niet zo vreemd, want wortels houden verband met oppervlaktes en diagonalen van vierkanten en rechthoeken.

\sqrt{2} was nogal wat voor de Pythagoreeëers. De ontdekking dat de wortel van 2 irrationaal was, zat hen echt dwars. De idee dat een getal niet kon worden uitgedrukt als een breuk was ondenkbaar. Het was Hippasus van Metaponte die dit bewijs leverde en het verhaal gaat dat hij zijn ontdekking op zee deed, waarna hij overboord werd gegooid!Archimedes maakte een zeer nauwkeurige schatting van de wortel uit 3 :

    \[\frac{265}{153}<\sqrt{3}<\frac{1351}{780}\]

of uitgedrukt in decimalen: 1,7320261<\sqrt{3}<1,7320512.  Let op dat dit tweede getal slechts 0,0000004 afwijkt , wat erg nauwkeurig is gezien Archimedes geen rekentoestel had en niet werkte in het tientallig stelsel. Sommige bronnen beweren dat hij de Babylonische methode volgde.

Deze methode, ook Herons methode genoemd, is een fraaie iteratieve formule. Bij \sqrt{S} , nemen we eerst een ruwe schatting en noemen die x_0. Verder geldt:

    \[x_{n+1}=\frac{1}{2}\Big(x_n+\frac{S}{x_n}\Big)\]

Op het rekentoestel vinden we voor de wortel uit 3 de waarde 1,732050808. Als eerste schatting nemen we x_0=2. dan is x_1=\frac{1}{2}(2+\frac{3}{2})=1,75. We hebben al twee cijfers juist. Een betere benadering is x_2=\frac{1}{2}(1,75+\frac{3}{1,75})=1,7321. Nu hebben we de eerste 4 cijfers van \sqrt{3} en als we willen, kunnen we hiermee doorgaan om steeds een nauwkeurigere schatting te krijgen van de wortel uit 3.

Python probleem 3

Bepaal de grootste priemfactor van 600851475143.

Antwoord Klik hier