Nootje 48

Bepaal alle drietallen natuurlijke getallen a,b,c waarvoor a.b.c=1989 en a+b+c=89

Antwoord

  • De oplossing is symmetrisch in a,b en c.
  • Redeneren we eventjes op c, dan moet c moet een deler zijn van 1989=3^2.13.17.
  • De delers van 1989 zijn: 1,3,9,13,17,39,51,117,153,221,663,1989.
  • Bij een keuze van c moeten we nog het stelsel oplossen:

        \[\begin{cases}a+b=89-c \\ a.b=\frac{1989}{c}\end{cases}\]

  • Noteer S=a+b en P=a.b, dan zijn a en b oplossingen van de vergelijking

        \[x^2-Sx+P=0\]

  • S=89+c; Omdat c oneven is , zal S dus even zijn en moet de discriminant S^2-4P een kwadraat zijn van een even getal ( anders zijn a en b geen natuurlijke getallen).
  • Voor c=1 is S=90 en P=1989. In dat geval is de discriminant gelijk aan 144 en vinden we dat a=39 en b=51.
  • Voor c=1 krijgen we dus als oplossingen de drietallen (39,51,1) en (51,39,1)
  • Door de symmetrie zijn de andere oplossingen dan (1,39,51),(1,51,39),(39,1,51),(51,1,39).

Opgave 40

Een convexe zeshoek is ingeschreven in een cirkel met straal r. Twee zijden van deze zeshoek hebben als lengte 7 eenheden , terwijl de vier overige als lengte 20 eenheden hebben. Bepaal de straal van de cirkel.

Antwoord

  • Wat de volgorde van de zijden is, steeds moet minstens aan één zijde met lengte 7 een zijde met lengte 20 aanliggend zijn. Noem de middelpuntshoek tegenover de zijde met lengte 20  eenheden 2a en de middelpuntshoek tegenover de zijde met lengte 7 eenheden 2b.
  • Door het apothema te trekken op de zijden van de zeshoek vinden we dat \sin a=\frac{10}{r} en \sin b=\frac{3,5}{3}.
  • De som van alle middelpuntshoeken is 360^\circ, dus 2*2b+4*2a=360^\circ. Hieruit volgt dat b+2a=90^\circ.
  • Dan geldt er dat \sin b=\cos 2a=1-2\sin^2 a
  • Volgens een vorig punt is dus 1-2\sin^2 a=\frac{3,5}{r}. Of

        \[1-2\Big(\frac{10}{r}\Big)^2=\frac{3,5}{r}\]

  • Dit geeft een vierkantsvergelijking: 2r^2-7r-400=0
  • De enige positieve oplossing van deze vergelijking is 16.
  • De straal is 16 eenheden lang.