Cryptharithmetica

Een cryptharitmetica is een wiskundige puzzel die als doel heeft de originele cijfers terug te vinden in een code. Verschillende letters staan voor verschillende cijfers. Een eenvoudig voorbeeld is : AT + A = TEE.

De T is een overdracht uit de kolom van de tientallen dus met T = 1. We krijgen dus A1 + A = 1EE. Bekijken we nu de kolom van de tientallen: omdat A niet gelijk is aan E, moet er een overdracht zijn uit de kolom van de eenheden, dus A + 1 = 10 +E. Hieruit volgt dat A = 9 en E = 0. De oplossing is dus 91 + 9 = 100.

Er bestaan veel van deze puzzels. Sommige bevatten , in de taal waarin ze geschreven zijn, een amusante uitspraak.  Een paar voorbeelden:

Of in het Nederlands ( naar de bekende Nederlands zwemster Ada Kok, wereldtop op de vlinderslag) : ADA / KOK = .SNELSNELSNEL…

Ontsnappingsspel: deel 2

Veronderstel nu even dat Peter wel de constante c kent waarmee hij kan ontsnappen, maar dat hij de startpositie z_0  niet kent. Dit leidt ons naar de definitie van de Juliaverzamelingen, genoemd naar de wiskundige Gaston Julia ( 1893-1978): voor een gegeven complex getal c, zullen sommige beginpunten z_0 een divergerende rij z_{n+1}=z_n^2+c genereren, terwijl andere startpunten niet-divergerende rijen voortbrengen. De Julia verzameling is de grens die de divergerende startpunten scheidt van de niet-divergerende startpunten.

Neem bijvoorbeeld c=0. Punten die binnen de eenheidscirkel liggen worden aangetrokken door de oorsprong. Punten erbuiten zullen verder en verder van de oorsprong bewegen. de Julia verzameling voor c=0 is dus de eenheidscirkel.

Enkele mooie Juliaverzamelingen zijn:

 

 

 

We kunnen ons de vraag stellen wanneer deze Juliaverzamelingen een samenhangende figuur vormen. Het waren de wiskundigen John Hubbard en Adrien Douady ( zie foto ) die vonden dat dit gebeurde voor de c-waarden die tot de Mandelbrotverzameling behoorden.

 

Opgave 15

Zoek het algemeen voorschrift van de rij a_{n+1}-2a_n=F_n met a_0=0, waarbij F_n de rij van Fibonacci is met F_0=0,F_1=1,F_2=1,...

Antwoord Klik hier

Opgave 11

E,F en G zijn de raakpunten van de ingeschreven cirkel aan de zijden van driehoek ABC. Bewijs dat AF,BG en CE door één punt gaan.

 

Antwoord Klik hier

Hoektransversalen in een driehoek

Neem een driehoek ABC. Een rechte l door een hoekpunt A van de driehoek heet hoektransversaal  of ceviaan van A. We onderzoeken onder welke voorwaarden de hoektransversalen van A,B en C door één punt gaan.

  1. Voor een willekeurig punt P op een hoektransversaal beschouwen we de verhouding van de afstanden tot de twee zijden.
    Omdat \dfrac{P_1R_1|}{|P_1Q_1|}=\dfrac{P_2R_2|}{|P_2Q_2|}, is deze verhouding constant. Noem deze constante v_1 Bij elke transversaal hoort een dergelijke constante. Bereken ze met de klok mee. Nu geldt: De 3 hoektransversalen zijn concurrent als en slechts als v_1v_2v_3=1. Zo geldt bijvoorbeeld voor de binnenbissectrices van een driehoek dat v_1=v_2=v_3=1, dus: de drie binnenbissectrices van een driehoek gaan door één punt.
  2. Laat men ook transversalen toe buiten de driehoek, dan moet men aan de constanten v_i enkel een ander teken geven. Hetr esultaat van hierboven blijft behouden.
  3. We kunnen een hoektransversaal ook kenmerken door de verhouding u_i van de oppervlaktedelen waarin de driehoek door de ceviaan verdeeld wordt.
    U_1=\dfrac{\text{opp} AA'C}{\text{opp} AA'B}=\dfrac{|A'C|}{|A'B|}. Het is eenvoudig te zien dat u_1u_2u_3=v_1v_2v_3 en dus geldt: De 3 hoektransversalen zijn concurrent als en slechts als u_1u_2u_3=1. Onder deze vorm is de stelling ook gekend als de stelling van Ceva.
  4. Nu geldt bijvoorbeeld voor de zwaartelijnen van een driehoek dat u_1=u_2=u_3=1, dus: de drie zwaartelijnen van een driehoek gaan door één punt.
  5. We kunnen dit ook ondzerzoeken voor de drie hooigtelijnen.
    u_1=\dfrac{b \cos \gamma}{c \cos \beta}u_2=\dfrac{c \cos \alpha}{a \cos \gamma} en u_3=\dfrac{a \cos \beta}{b \cos \alpha} en dus is u_1u_2u_3=1. Bijgevolg geldt: de drie hoogtelijnen van een driehoek gaan door één punt.