Griekse wiskunde deel 6

Over de mens Euclides is weinig bekend, We weten dat hij rond 300 v.C. wiskunde doceerde in het museion van Alexandrië. Gevormd in de scholen van Plato en Aristoteles, is hij dus één van de Griekse intellectuelen die naar Alexandrië toestroomden om er beroepsgeleerde te worden. 

Uit de analyse van zijn werken is vrij duidelijk te zien dat Euclides geen groot wiskundige was, maar wel een buitengewone didacticus. Zo ligt het geniale van zijn Elementen niet zozeer in de inhoud, want die is afkomstig van zijn grote voorgangers Archytas, Theatetus en Eudoxos. Maar het bijzondere is de gepaste keuze van de volgorde, waar de verschillende onderdelen worden behandeld. Een vrij omvangrijk eerste deel is ook toegankelijk voor middelmatige leerlingen, de moeilijke delen komen pas later aan de beurt.

De elementen staat zeker op de lijst van de boeken die het grootst aantal uitgaven en vertalingen hebben gekend. Deze bestseller omvat 13 boeken, waaraan door latere wiskundigen nog 2 boeken zijn toegevoegd. ( o.a. een boek over regelmatige veelvlakken). De boeken 1 tot 4 handelen over de meetkunde van de rechte, de driehoek en de cirkel. Boeken 5 en 6 zijn gewijd aan de leer van de evenredigheden en de gelijkvormige figuren. In boeken 7,8 en 9 gaat het over de natuurlijke getallen. Boek 10 bestudeert de irrationale getallen. Tenslotte gaat het in de boeken 11,12 en 13 over de meetkunde van de ruimte en de 5 regelmatige veelvlakken.

Griekse wiskunde: deel 4

De  4de eeuw voor  Christus: bloeiperiode van de wiskunde. De tijd van Plato en Aristoteles.

We beperken ons tot een overzichtelijke samenvatting van de wiskundige werken, waaruit de krachtlijnen van de onderzoeken zouden moeten blijken. De meeste bijdragen halen een hoog wetenschappelijk niveau en de bewijzen zijn niet alleen wiskundig streng maar getuigen ook van een grote denkkracht en een rijke creativiteit. In het filosofisch stelsel van Plato wordt de wiskunde verheven tot de kunst van het exact redeneren over louter abstracte begrippen, die dus los dienen te staan van elke zintuigelijke waarneming.

  • de  irrationale getallen: Theaetetus (414-370 v.C.), vriend van Plato en Socrates,  stelt in een samenspel tussen meetkunde en getallenleer een classificatie op van 13 irrationaliteiten en bewees ook dat de verzameling irrationale getallen oneindig is.
  • de bekende wiskundige van deze tijd was Eudoxos van Cnidus (405-315 v.C.) .  Hij werkte vooral rond de gulden snede, de doorsnede van krommen en de verdubbeling van een kubus .Hij heeft eveneens ontdekt dat de verhouding van het volume van een piramide ten opzichte van een prisma op hetzelfde grondvlak een op drie is. 
  • De exhaustie methode : het geniale antwoord van Eudoxos op de paradoxen van Zeno. Heeft me, 2 ongelijke grootheden van een zelfde soort, dan kan steeds een natuurlijk getal gevonden worden dat met hun verschil vermenigvuldigd, elke gegeven grootheid van die soort overtreft. Hiermee bewees hij bvb. dat de oppervlakten van twee cirkels zich verhouden als de kwadraten van hun stralen.
  • De 5 regelmatige veelvlakken ( platonische lichamen) , veelvlakken die begrensd zijn door een aantal congruente regelmatige veelhoeken: tetraëder, kubus, dodecaëder, octaëder en de isocaëder. De drie eersten waren reeds bekend aan de Pythagoreeërs. Het was Theaetetus die de laatste twee ontdekte en een nauwkeurige beschrijving gaf van de constructie en de berekening van de ribben in functie van de straal van de omgeschreven bol.
  • Het bestuderen van de 3 grote problemen ( driedeling hoek, verdubbeling kubus en kwadratuur van de cirkel) leidde tot de studie van speciale krommen: de kwadratix ( Hippias van Elis , rond 420 v.C.), de kegelsneden ( Menaechmus rond 350 v.C.)
  • Er ontstond meer en meer de noodzaak om de volledige wiskundige kennis te ordenen tot een samenhangend geheel. Hippochrates van Chios zou de samensteller zijn van de eerste zogenaamde Elementen.  Van hem zijn ook  de maantjes van Hippocrates

5. Wiskunde in het oude China

Rond 1500 voor Christus  raakten de eerste cijfers in gebruik. De chinezen hadden karakters voor 1,2,3,… alsmede voor 10,100,1000,… Voor de nul gebruikten ze een spatie. Optellen en aftrekken gebeurde met telstokjes, gemaakt van bamboe. Voor vermenigvuldigen gebruikten ze tabellen  tot 9 maal 9.

Rond 200 voor Christus werden nagenoeg alle bestaande boeken verbrand, zodat we over de wiskunde van voor die tijd geen documenten hadden. Bij opgravingen rond 1900 werden toch wat documenten gevonden die samengesteld werden na de boekverbranding en die kunnen beschouwd worden als compilaties van de wiskundige kennis uit het verleden. De twee belangrijkste zijn :

  • Zhou Bi Suan-Jing ( de wiskundige klassieker van de gnomon en het cirkelvormig hemelpad): het behandelt ruim 250 astronomische en wiskundige problemen onder de vorm van gesprekken tussen een Chinese edelman en zijn astroloog. Het bevat één van de vroegste bewijzen van de stelling van Pythagoras.
  • Jiuzhang Suansu ( de negen afdelingen van mathematische kunst) :hier werden voor het eerst zowel positieve als negatieve getallen gebruikt. Er werd ook veel aandacht besteed aan magische vierkanten. De behandelde problemen zijn van praktische aard en men stelt zich meestal tevreden met het beschrijven van procedures, waarbij deductieve bewijzen ontbreken.

2.De beschavingen van de riviervalleien

Ongeveer 10000 jaar geleden veranderde de Neolithische revolutie voor altijd de interactie tussen de mens en de wereld om ons heen door de invoering van het basis ingrediënt dat beschaving mogelijk maakt: de landbouw.

Voorafgaand aan de Neolithische agrarische revolutie, leefden de mensen ​​als jager-verzamelaars, constant in beweging om zichzelf te voeden. Ze waren georganiseerd in kleine nomadische groepen, meestal van rond de twintig tot dertig mensen. Ze waren niet in staat om in grote populaties te leven vanwege hun beperkte voedselvoorziening en de noodzaak om te blijven bewegen.

De Neolithische agrarische revolutie vond zijn oorsprong in het Midden-Oosten, waarschijnlijk vanwege het gunstige klimaat. Maar na verloop van tijd werd de landbouw verspreid naar andere vruchtbare gebieden rond rivieren, zoals Egypte rond de Nijl en de Indus vallei.

De voornaamste reden was de beschikbaarheid van water. grote hoeveelheden water en vruchtbare grond, bevorderd door regelmatige overstromingen, zorgden voor overvloedige landbouwproductie en niet alle beschikbare arbeid moest voor de landbouw worden gebruikt. Zo was het voor sommige leden van de gemeenschap mogelijk andere activiteiten te beoefenen, zoals bouw, handel of administratie.

Het is duidelijk dat hierdoor een sterke behoefte ontstond aan het beoefenen van activiteiten zoals meten en vergelijken van hoeveelheden, die noodzakelijk werden om handel te drijven, opmeten van landerijen vereist om eigendommen te verdelen en de studie van de bewegingen van zon, maan en planeten die leidden  tot het berekenen van een kalender en het bepalen van seizoenen. Deze activiteiten werden uiteraard sterk bevorderd door wiskundig denken.

1. Vroegste sporen van wiskundig denken

Het is onmogelijk te bepalen wanneer de primitieve mens vertrouwd geraakte met basis begrippen zoals hoeveelheden en vormen. Het staat wel vast dat ruim 30000 jaar geleden de mens reeds  verder dacht dan de hoeveelheden één, twee en meer. Hij toonde ook interesse is regelmatig weerkerende verschijnselen zoals de opeenvolging van de dagen, de maanfasen of de wisseling van de seizoenen.

De primitieve mens vertrok uit Afrika om de rest van de wereld te bevolken. Een aantal ‘bewijzen’ van hun eerste wiskundig denken:

  • Het Lebombo beentje: Het is een gekerfd beentje, gedateerd op ca. 35.000 jaar v.Chr. Het werd gevonden in het Lebombo gebergte ergens tussen  Zuid-Afrika en Swasiland.  Het vertoont overeenkomsten met de kalenderstokjes . Het geeft niet aan dat de mensen in staat waren om te rekenen, maar wel om te tellen en een bepaalde cyclus te achterhalen.
  • Het Ishango beentje: Het werd gevonden nabij Ishango ( Belgisch Congo) en is ongeveer 22000 jaar oud. Men vermoedt dat het om telstokjes gaat, waarbij basis 6 en 10 worden gebruikt.
    De eerste kolom geeft alle priemgetallen tussen 10 en 20. Totale som 60. De som van de tweede kolom is 48 en van de derde is terug 60. In d ederde kolom komen de getallen voor die 1 verschillen van een tiental: 9,11,19 en 21.
  • Rotsschilderingen  tonen de mogelijkheid van de primitieve mens om ongeveer 35000 jaar geleden figuratieve en abstracte vormen weer te geven.