Nootje 45

Zoek een getal van 4 cijfers, waarbij elk cijfer kleiner is dan 7. Het getal is een kwadraat en als je bij elk cijfer 3 optelt bekom je opnieuw  een getal dat een kwadraat is.

Antwoord

  • Noteer met x het gezochte getal. 
  • Dan kan je schrijven dat x=p^2 met p tussen 31 en 100.
  • Elk cijfer mer 3 vermeerderen betekent dat je 3333 optelt bij x. 
  • Deze uitkomst is weer het kwadraat van een getal: Noteer dit als q^2.
  • Dan is q^2-p^2=3333 of (q-p)(q+p)=3333
  • Nu kan je 3333 schrijven als 1.3333=3.1111=11.303=33.101.
  • Zo bekom je bvb het stelsel q+p=101 en q-p=33, waaruit volgt dat p=34 
  • De andere mogelijkheden leveren geen oplossing op voor p tussen 32 en 100.
  • Het gezocht getal is dus 34^2=1156

Nog 2 opgaven over priemgetallen

De som van twee tweelingpriemen, groter dan 3, is deelbaar door 12.

Antwoord
  • Veronderstel dus dat p>3 en dat  p en p+2 allebei priem zijn.
  • Hun som is dan S=2(p+1).
  • Omdat p oneven is , is p+1 even en is S dus zeker al deelbaar door 4.
  • p kan geen drievoud zijn. Het kan evenmin van de vorm 3k+1 zijn , want anders zou p+2=3(k+1) en dus niet priem zijn.
  • Bijgevolg is p van de vorm 3k-1 en dan is S=6k. Dus is S deelbaar door 3 en samen met een vorig resultaat is S dus deelbaar door 12.

Veronderstel dat p een priemgetal is en dat allebei de oplossingen van x^2+px-444p=0 gehele getallen zijn, zoek dan de mogelijke waarden van p.

 

Antwoord

 

  • De discriminant van de gegeven vergelijking is p^2+4*444p.
  • Als de vergelijking gehele oplossingen moet hebben moet  dit zeker een volkomen kwadraat zijn , dus is er  een gehele q met q^2=p^2+4*444p=p(p+4*444).
  • Vermits hierboven p een deler is van het rechterlid en omdat p priem is moet p ook een deler zijn van q en dan kunnen we schrijven dat q=p.r, met r een geheel  getal.
  • Ingevuld vinden we zo dat p(p+4*444)=p^2r^2 of pr^2=p+4*444.
  • Hieruit volgt dat p een deler moet zijn van 4*444. De mogelijke waarden voor p zijn dan 2, 3 en 37. 
  • We kunnen p = 2 of  p = 3 in de oorspronkelijke vergelijking en we zien dat er dan geen gehele oplossingen zijn. Wel bij p=37.
  • Er is dus slechts 1 oplossing, namelijk p = 37.

Nootje 21

Hoeveel natuurlijke getallen van drie cijfers bestaan er die bij deling door 20,50 en 70 dezelfde rest laten.

 

Antwoord

 

 

  • De mogelijke rest moet uiteraard een natuurlijk getal zijn kleiner dan 20, dus behorend tot {0,1,2,…,19}.
  • Het kleinste gemene veelvoud van 20,50 en 70 is 700.
  • Voor elke rest r uit {0,1,2,…,19} is er juist 1 getal van de vorm 700 + r die bij deling door 20,50 en 70 dezelfde rest r overlaat. 
  • Bijgevolg zijn er juist 20 getallen van drie cijfers die voldoen aan de gegeven voorwaarde: 700,701,…,719