Roemeense wiskunde olympiade

Op 15 september 1895 werd Romanian Mathematical Society (Societatea de Stiinte Matematice din Romania) opgericht. Dit is ook de datum van de eerste uitgave van de Gazeta Matematica. Soms neemt men ook 1910 als stichtingsdatum. Dit tijdschrift werd opgericht door 5 jonge ingenieurs die bezorgd waren over de gebrekkige kennis van de wiskunde. Het tijdschrift mikte op uitdagende lezers en interessante problemen om alzo een dieper inzicht te verwerven in de schoolse wiskunde. De nadruk werd gelegd op allerlei problem solving competities die tenslotte uitmondden in de eerste nationale wiskunde olympiade in 1949. Deze werden gehouden in verschillende ronden ( district-nationaal) en waren toegankelijk voor leerlingen van graad 7 tot 12.

Roemenië stond ook aan de wieg van de IMO. Er werd toen immers ook beslist een internationale wiskunde olympiade te organiseren. Roemenië deed dat in 1959 ( 1ste IMO ), 1960, 1969, 1978,  1999 en 2018.

Nootje 10

Wat is de som van de omgekeerden van de wortels van x^4+x^3+2x^2-3x+12=0?

Antwoord Klik hier

Nootje 9

Als de omtrek van een driehoek gelijk is aan 2, bewijs dan dat niet alle hoogtelijnen langer kunnen zijn dan \frac{1}{\sqrt{3}}.

Antwoord Klik hier

Nootje 7

Zoek de maximale waarde van b in P(x)=ax^2+bx+c, als a,b en c reële getallen zijn en |P(x)|\leq 1 voor -1 \leq x\leq 1. Geef ook een veelterm die deze maximale waarde van b bereikt.

Antwoord Klik hier

Nootje 6

F(x) is een veelterm met gehele coëfficiënten en waarvan de coëfficiënt van de hoogste graads term 1 is. Bovendien neemt f(x) de waarde 5 aan voor 4 verschillende gehele getallen. Bewijs dat f(x) nooit de waarde 8 kan aannemen.

Antwoord Klik hier