Eutrigon stelling

Een eutrigon is een willekeurige driehoek waarvan 1 hoek 60 graden meet. De zijde ertegenover noemt men de hypotenusa  van het eurtrigon.

Men kan op de zijden van een eutrigon gelijkzijdige driehoeken construeren, zoals in onderstaande tekening:

Er bestaat een stelling die zegt dat de som van de oppervlakten van de eutrigon en de driehoek op de hypotenusa, gelijk is aan de som van de oppervlakte van de  driehoeken op de twee andere zijden:

    \[S+S_2=S_1+S_3\]

In driehoek ABC kan je de cosinusregel toepassen:

    \[b^2=a^2+c^2-ac\]


De oppervlakte van een gelijkzijdige driehoek met zijde z wordt gegeven door de formule: \frac{\sqrt{3}z^2}{4}. Verder weten we dat de oppervlakte van driehoek ABC gegeven wordt door \frac{1}{2}ac \sin 60^{\circ}. Als we beide leden in de cosinusregel van hierboven vermenigvuldigen met \frac{\sqrt{3}}{4}, vinden we dat

    \[S+S_2=S_1+S_3\]

Sangaku 6

Antwoord

  • We zien een regelmatige zeshoek. Veronderstel dat de lengte van een zijde gelijk is aan 1. Zoek de afstand van A tot H.
  • We berekenen eerst |AF| door gebruik te maken van de cosinusregel in driehoek AGF ( gelijkbenige driehoek met opstaande zijden gelijk aan 1 en een tophoek van 120^\circ. We vinden : |AF|=\sqrt{3}.
  • We berekenen  nu |FH| in driehoek FEH. weer de cosinusregel : 1^2=x^2+x^2-2x^2\cos 120^÷circ.  Hieruit volgt: |AF|=\frac{1}{\sqrt{3}}.
  • Tenslotte berekenen we |AH| in driehoek AHF. Cosinusregel met zijden \sqrt{3} en \frac{1}{\sqrt{3}} en ingesloten hoek 60^\circ. Dit geeft: |AH|=\sqrt{\frac{7}{3}}.