Een patroon zoeken…

Stel f_0(x)=\dfrac{1}{1-x} en f_n(x)=f_0(f_{n-1}(x)) voor n=1,2,3,...  Bereken dan

    \[f_{2022}(2022)\]

Het is onwaarschijnlijk dat je alle functies f_n(x), waarbij n varieert van 1 tot n, zal moeten berekenen. Waarschijnlijk zit er ergens een patroon in…

Antwoord

 

  • f_1(x)=\dfrac{1}{1-f_0(x)}=\dfrac{x-1}{x}.
  • f_2(x)=\dfrac{1}{1-f_1(x)}=x.
  • Maar dan is f_3(x)=f_0(x).
  • Algemeen is f_{3n}(x)=f_0(x), f_{3n+1}(x)=f_1(x) en f_{3n+2}(x)=f_2(x).
  • Omdat 2022 deelbaar is door 3, zal f_{2022}(x)=f_0(x).
  • En dus is f_{2022}(2022)=-\dfrac{1}{2021}.

Nootje 18

Bereken de oppervlakte van een rechthoekige driehoek in functie van de bissectrice en zwaartelijn betrokken uit de rechte hoek.

Antwoord

 

  • Noem de oppervlakte A en de rechthoekszijden  van de rechthoekige driehoek a en b. Noteer met x de lengte van de bissectrice uit A en met y de lengte van de zwaartelijn uit A.
  • Dan is A de som van de oppervlaktes van ABE en AEC, dus A=\frac{1}{2}ax \sin 45^\circ+\frac{1}{2}bx \sin 45^\circ.
  • Hieruit volgt dat A=\frac{\sqrt{2}}{4}(a+b)x.
  • Kwadrateren geeft :  A^2=\frac{2}{16}(a^2+b^2+2ab).
  • Volgens Pythagoras is a^2+b^2= c^2, met c de schuine zijde. Maar de zwaartelijn getrokken naar de schuine zijde is gelijk aan de helft van die schuine zijde. Dus c=2y.
  • Verder is ab gelijk aan het dubbele van de oppervlakte van de driehoek, dus ab=2A.
  • Ingevuld : A^2=\frac{1}{8}(4y^2+4A).
  • Vereenvoudigd: A^2=\frac{1}{2}x^2y^2+\frac{1}{2}x^2A.
  • Hieruit kan je A oplossen:

        \[A=\frac{x^2+x\sqrt{x^2+8y^2}}{4}\]

 

Opgave 24

Bewijs dat er tussen elke 9 getallen er twee zijn, een a en een b, waarvoor

    \[0<\frac{a-b}{1+ab}<\sqrt{2}+1\]

Antwoord

  • De middelste uitdrukking doet me onmiddellijk denken aan de formule voor \tan(a-b).
  • Bovendien volgt uit 1=\tan(\frac{\pi}{4})=\frac{2\tan(\frac{\pi}{8})}{1-\tan^2(\frac{\pi}{8})} dat \tan(\frac{\pi}{8})=\sqrt{2}+1.
  • Verdeel nu het interval ]-\frac{\pi}{2},\frac{\pi}{2}[ in 8 gelijke stukken.
  • Noteer de 9 gegeven getallen door a_i met i=1,2,\cdots,9. Stel vervolgens x_i=\text{ bgtan }(a_i).
  • Er zijn 9 getallen x_i voor 8 intervallen, dus volgt uit het duivenhok principe dat er minstens twee getallen x_i en x_j met x_j>x_i in hetzelfde interval liggen.
  • Dan geldt 0< x_j-x_i<\frac{\pi}{8}.
  • Omdat de tangensfunctie stijgend is op ]-\frac{\pi}{2},\frac{\pi}{2}[, volgt hieruit dat 0< \tan(x_j-x_i)=\frac{a_j-a_i}{1+a_j.a_i}<\sqrt{2}+1.

Opgave 15

Zoek het algemeen voorschrift van de rij a_{n+1}-2a_n=F_n met a_0=0, waarbij F_n de rij van Fibonacci is met F_0=0,F_1=1,F_2=1,...

Antwoord

  • Het rechterlid van de formule is niet nul, zodat we geen lineaire recurrente rij krijgen. Maar dat kunnen we verhelpen door ook te schrijven dat  a_{n+2}-2a_{n+1}=F_{n+1} en a_{n+3}-2a_{n+2}=F_{n+2}.
  • De laatste vergelijking verminderd met de vorige en de opgave geeft, gebruikmakend van de eigenschappen van de rij van Fibonacci, dat a_{n+3}-3a_{n+2}+a_{n+1}+2a_n=0.
  • De karakteristieke vergelijking van deze lineaire recurrentie is x^3-3x^2+x+2=(x-2)(x^2-x-1). Volgens de theorie van de lineaire recurrente rijen is dan a_n=A.2^n+B.\alpha^n+C.\beta^n. Hierbij is \alpha=\dfrac{1+\sqrt{5}}{2} en \beta=\dfrac{1-\sqrt{5}}{2}. We weten, ook door gebruik te maken van de theorie van de lineaire recurrentie, dat F_n=\dfrac{\alpha^n-\beta^n}{\alpha-\beta}.
  • In a_n=A.2^n+B.\alpha^n+C.\beta^n, bepalen we A,B en C door gebruik te maken van a_0=0,a_1=0 en a_2=1. We vinden A=1, B=-\dfrac{\alpha^2}{\alpha-\beta} en C=\dfrac{\beta^2}{\alpha-\beta}.
  • Bijgevolg is a_n=2^n-F_{n+2}.