Nootje 49

De functie f is gedefinieerd op de verzameling geordende paren positieve getallen en voldoet aan :f(x,x)=x , f(x,y)=f(y,x) en f(x,y).(x+y)=y.f(x,x+y). Bereken f(14,52)

Antwoord

  • f(14,52)=f(14,14+38). Pas nu regel 3 toe:
  • f(12,52)=\frac{52}{38}f(14,38). Nu is 38=14+24. Pas opnieuw regel 3 toe en we krijgen:
  • f(12,52)=\frac{52}{24}f(14,14+10). Nogmaals regel 3:
  • f(12,52)=\frac{52}{10}f(14,10)
  • We draaien de argumenten om volgens regel 2 en we vinden 
  • f(12,52)=\frac{52}{10}f(10,14)
  • f(12,52)=\frac{52}{10}f(10,10+4)=\frac{52}{10}.\frac{14}{4}.f(10,4)
  • Omdraaien : f(12,52)=\frac{91}{5}.f(4,4+6)=\frac{91}{3}.f(4,4+2)
  • Nog maar een keer regel 3 geeft :f(12,52)=91.f(4,2)=91.f(2,2+2).
  • Uiteindelijk bekomen door regel 3 en regel 1 het antwoord:

        \[f(14,52)=91.2.f(2,2)=91.2.2=364\]

 

Een patroon zoeken…

Stel f_0(x)=\dfrac{1}{1-x} en f_n(x)=f_0(f_{n-1}(x)) voor n=1,2,3,...  Bereken dan

    \[f_{2022}(2022)\]

Het is onwaarschijnlijk dat je alle functies f_n(x), waarbij n varieert van 1 tot n, zal moeten berekenen. Waarschijnlijk zit er ergens een patroon in…

Antwoord

 

  • f_1(x)=\dfrac{1}{1-f_0(x)}=\dfrac{x-1}{x}.
  • f_2(x)=\dfrac{1}{1-f_1(x)}=x.
  • Maar dan is f_3(x)=f_0(x).
  • Algemeen is f_{3n}(x)=f_0(x), f_{3n+1}(x)=f_1(x) en f_{3n+2}(x)=f_2(x).
  • Omdat 2022 deelbaar is door 3, zal f_{2022}(x)=f_0(x).
  • En dus is f_{2022}(2022)=-\dfrac{1}{2021}.

Nootje 18

Bereken de oppervlakte van een rechthoekige driehoek in functie van de bissectrice en zwaartelijn betrokken uit de rechte hoek.

Antwoord

 

  • Noem de oppervlakte A en de rechthoekszijden  van de rechthoekige driehoek a en b. Noteer met x de lengte van de bissectrice uit A en met y de lengte van de zwaartelijn uit A.
  • Dan is A de som van de oppervlaktes van ABE en AEC, dus A=\frac{1}{2}ax \sin 45^\circ+\frac{1}{2}bx \sin 45^\circ.
  • Hieruit volgt dat A=\frac{\sqrt{2}}{4}(a+b)x.
  • Kwadrateren geeft :  A^2=\frac{2}{16}(a^2+b^2+2ab).
  • Volgens Pythagoras is a^2+b^2= c^2, met c de schuine zijde. Maar de zwaartelijn getrokken naar de schuine zijde is gelijk aan de helft van die schuine zijde. Dus c=2y.
  • Verder is ab gelijk aan het dubbele van de oppervlakte van de driehoek, dus ab=2A.
  • Ingevuld : A^2=\frac{1}{8}(4y^2+4A).
  • Vereenvoudigd: A^2=\frac{1}{2}x^2y^2+\frac{1}{2}x^2A.
  • Hieruit kan je A oplossen:

        \[A=\frac{x^2+x\sqrt{x^2+8y^2}}{4}\]