Geschiedenis van de kansrekening: deel 4

Rond de eeuwwisseling hebben grote wiskundige zoals Poincaré(1854-1912) en Hilbert(1862-1943) geprobeerd om de kansrekening nieuw leven in te blazen. Zonder veel succes echter, omdat de kanstheorie gebouwd was op los zand. In 1919 was er een eerste poging tot axiomatisering  door Richard von Mises (883-1953), een Oostenrijkse wetenschapper en filosoof.

Zijn axioma’s steunden op de frequentiedefinitie van het begrip kans als limietwaarde van de relatieve frequentie, als het aantal proefnemingen oneindig groot wordt.

Rond 1920 was er veel wiskundig onderzoek rond de zogenaamde centrale limietstelling: gestandaardiseerde sommen van onafhankelijke toevalsveranderlijken hebben een verdelingsfunctie die dicht  bij de standaardnormale verdelingsfunctie ligt. Het woord centraal in centrale limietstelling verwijst naar de centrale rol die deze stelling speelt in de kanstheorie en de statistiek. Een eerste bewijs werd gegeven door Lyapunov in 1900. Belangrijke resultaten rond deze stelling en haar veralgemeningen kwamen in de twintiger jaren van de Rus Bernstein(1880-1968), de Fin Lindeberg(1876-1932)  en de Franse wiskundige Lévy(1886-1971). In veel van de bewijzen was de kanstheorie eerder bijzaak; alles kon met de klassieke analyse bewezen worden.

Geschiedenis van de kansrekening: deel 3

Een volgende belangrijke stap in de ontwikkeling van de kanstheorie is het werk Analyticus des Probabilités (1812) van Pierre-Simon  Laplace(1749-1827)

 

Hij baseerde zijn kanstheorie op combinatieleer en gebruikte als definitie van kans de verhouding van het aantal gunstige gevallen tot het aantal mogelijke gevallen. Dit kan uiteraard enkel als elke uitkomst van het kansexperiment even waarschijnlijk is. Dit houdt een ernstige beperking in. Het werk van Laplace bevat belangrijke resultaten, maar de streng-wiskundige opbouw ontbreekt.

Na Laplace was er een ernstige verzwakking van de interesse voor de kanstheorie.  Er werd nog wel interessant werk verricht door P.L.Chebyshev(1821-1894), Markov(1856-1922) en Lyapunov(1857-1918), de grondleggers van de sterke hedendaagse Russische school in kanstheorie.

Geschiedenis van de kansrekening: deel 2

Een volgende mijlpaal kwam er van Jakob Bernoulli( 1654-1705). zijn werk Ars Conjectandi werd postuum door zijn neef gepubliceerd in 1713.

Het bevatte ondermeer het eerste bewijs van de zwakke wet van de grote aantallen. Deze wet laat zien dat de verdeling van het gemiddelde van een n-tal onafhankelijke  en gelijkverdeelde toevalsvariabelen voor toenemede n meer en meer geconcentreerd wordt om de verwachtingswaarde.

Een ander hoogtepunt uit de 18de eeuw was het werk Essai d’Analyse sur les Jeux de Hasard(1708)  van Pierre-Rémond de Montfort(1678-1719).

Tenslotte vermelden we ook nog het boek Doctrine of Chances van Abraham de Moivre(1667-1754)

Geschiedenis van de kansrekening

Waarschijnlijk zijn de eerste wiskundige discussies over kansen ontstaan bij gokkers uit de 17de eeuw die zich vragen stelden over spelletjes met dobbelstenen en speelkaarten. Deze gokkers vroegen raad aan de Franse wiskundige Blaise Pascal(1623-1662), die op zijn beurt hierover correspondeerde met Pierre de Fermat(1601-1665).

Ze gebruikten combinatorische methoden om sommige van deze vraagstukken op te lossen. In 1657 verscheen van de Nederlander Christiaan Huygens (1629-1695) het boek De Ratiociniis is Alea Ludo. Dit boek werd beschouwd als eerste invloedrijk werk over kansrekenen.

Vierkantswortels

Vierkantswortels zijn al eeuwenlang bekend. De Rhindpapyrus verwijst al in 1650 v.Chr. naar vierkantswortels, maar dat is niet zo vreemd, want wortels houden verband met oppervlaktes en diagonalen van vierkanten en rechthoeken.

\sqrt{2} was nogal wat voor de Pythagoreeëers. De ontdekking dat de wortel van 2 irrationaal was, zat hen echt dwars. De idee dat een getal niet kon worden uitgedrukt als een breuk was ondenkbaar. Het was Hippasus van Metaponte die dit bewijs leverde en het verhaal gaat dat hij zijn ontdekking op zee deed, waarna hij overboord werd gegooid!Archimedes maakte een zeer nauwkeurige schatting van de wortel uit 3 :

    \[\frac{265}{153}<\sqrt{3}<\frac{1351}{780}\]

of uitgedrukt in decimalen: 1,7320261<\sqrt{3}<1,7320512.  Let op dat dit tweede getal slechts 0,0000004 afwijkt , wat erg nauwkeurig is gezien Archimedes geen rekentoestel had en niet werkte in het tientallig stelsel. Sommige bronnen beweren dat hij de Babylonische methode volgde.

Deze methode, ook Herons methode genoemd, is een fraaie iteratieve formule. Bij \sqrt{S} , nemen we eerst een ruwe schatting en noemen die x_0. Verder geldt:

    \[x_{n+1}=\frac{1}{2}\Big(x_n+\frac{S}{x_n}\Big)\]

Op het rekentoestel vinden we voor de wortel uit 3 de waarde 1,732050808. Als eerste schatting nemen we x_0=2. dan is x_1=\frac{1}{2}(2+\frac{3}{2})=1,75. We hebben al twee cijfers juist. Een betere benadering is x_2=\frac{1}{2}(1,75+\frac{3}{1,75})=1,7321. Nu hebben we de eerste 4 cijfers van \sqrt{3} en als we willen, kunnen we hiermee doorgaan om steeds een nauwkeurigere schatting te krijgen van de wortel uit 3.