6. Wiskunde in het oude Indie

 

De eerste belangrijke beschaving in het Indus gebied was de Harappa-beschaving rond 2000 voor Christus

Het Vedische volk kwam India rond 1500 voor Christus binnen vanuit wat nu  Iran is.  In deze Vedische beschaving was de bevolking verdeeld in verschillende sociale klassen. de leiding berustte bij de priesterklasse, de Brahmanen. Hun heilige teksten staan bekend staan ​​als de Veda’s. De teksten dateren van ongeveer de 15e tot de 5e eeuw voor Christus en werden gebruikt voor offerrituelen die het belangrijkste kenmerk van de religie waren. De belangrijkste van deze documenten zijn de Baudhayana Sulbasutra geschreven rond 800 voor Christus en de Apastamba Sulbasutra geschreven rond 600 voor Christus. Minder gekend zijn de Manava Sulbasutra geschreven rond 750 voor Christus en de Katyayana Sulbasutra geschreven rond 200 voor Christus.

De Sulbasutra’s zijn bijlagen bij de Veda’s die regels geven voor het bouwen van altaren. Als het rituele offer succesvol zou zijn, moest het altaar zich  zeer precieze afmetingen hebben. Om de goden tevreden te stellen, moest alles met een zeer precieze formule worden uitgevoerd, dus werd wiskundige nauwkeurigheid van het grootste belang geacht. 

Alles wat bekend is van Vedische wiskunde is vervat in de Sulbasutras. Sommige historici beweren dat de wiskunde, meer speciaal de meetkunde, ook moet hebben bestaan ​​als ondersteuning van de astronomie.

Een paar voorbeelden van hun meetkundige kennis:

  • Een vierkant dat de som is van twee andere vierkanten
  • De diagonaal van een vierkant geeft een vierkant van dubbele oppervlakte.
  • Een vierkant dat gelijk is aan een cirkel (komt overeen met een waarde voor pi van ongeveer 3,00444)
  • De som van de oppervlakten van vierkanten van de lengte en breedte van een rechthoek geeft het vierkant van de diagonaal van de rechthoek.
  • Vermeerder de eenheid met een derde en dit derde met zijn vierde en verminder dat met het 34ste deel van dat vierde. zo bekom je een benadering voor de vierkantswortel van 2: 1,414215

De Sulbasutra’s bevatten geen enkel bewijs van de regels die ze beschrijven. Sommige regels, zoals de methode om een ​​vierkant te construeren dat gelijk is aan een bepaalde rechthoek, zijn exact. Anderen, zoals het construeren van een vierkant gelijk aan dat van een bepaalde cirkel, zijn benaderingen. 

 

 

Niet-Euclidische meetkunde

 

De meetkunde, die we dagelijks gebruiken, wordt Euclidische meetkunde genoemd, ter ere van Euclides, die tussen 330 en 320 voor Christus een aantal boeken, genaamd „Elementen” geschreven heeft.

Hierin wordt  de meetkunde opgebouwd met stellingen vertrekkend van een vijftal postulaten of axioma’s: 
1. Door 2 verschillende punten gaat juist 1 rechte.
2. Een lijnstuk kan naar beide kanten onbeperkt worden
    verlengd.
3. Er kan met elk middelpunt en elke straal een cirkel
    getrokken worden.
4. Alle rechte hoeken zijn gelijk.
5. Door een punt P buiten een rechte , gaat precies één rechte
    die evenwijdig loopt met  de eerste rechte.

Dit laatste axioma staat bekend als het parallellenpostulaat.
Eeuwen heeft men gedacht dat men dit postulaat kon bewijzen aan de hand van de andere vier axioma’s. Trouwens de formulering van het parallellenpostulaat was oorspronkelijk anders.  De gegeven formulering komt van John Playfair. Deze formulering stamt uit 1795 en staat bekend als “Playfair’s axioma” . Een andere gelijkwaardige formulering van dit postulaat is dat de hoekensom van een driehoek gelijk is aan 180°.

Het duurde tot de 19 de eeuw voor het juist inzicht er kwam en wel bij 3 wiskundigen ongeveer gelijktijdig en waarschijnlijk onafhankelijk van elkaar: C.F.Gauss, J.Bolyai en I.Lobatschefsky.

Het was Joha,, Bolyai die tot het inzicht kwam dat het mogelijk was een meetkunde op te stellen, waarin door een punt buiten een rechte oneindig veel rechten gaan die de gegeven rechte niet snijden. Hij publiceerde zijn ideeën in 1832 en gaf zo gestalte aan de hyperbolische meetkunde. De som van de hoeken van een driehoek is hier minder dan 180°.  In de hyperbolische meetkunde wordt dus niet meer aan het parallellenpostulaat voldaan. 
Later werd ook de elliptische meetkunde ontdekt. Elliptische meetkunde is een niet-Euclidische meetkunde, waarbij door een punt buiten een rechte  geen andere rechten bestaat die de gegeven rechte niet snijdt.

De gewone meetkunde is dus niet de meetkunde, maar een  meetkunde. Met andere axioma’s krijgen we een ander soort meetkunde.

De stelling van Napoleon

Iedereen kent gelijkvormige driehoeken. In deze tekst proberen we ze te beschrijven met complexe getallen. Elk punt Z in het vlak correspondeert met een uniek complex getal z.

Twee driehoeken ABC en DEF zijn rechtstreeks gelijkvormig ( alle  hoeken hebben eenzelfde oriëntatie, bvb met de klok mee) als en slechts als

    \[\begin{vmatrix} a&d&1\\b&e&1\\c&f&1 \end{vmatrix}=0\]

Bij onrechtstreekse gelijkvormigheid moet je , in de tweede kolom, elk complex getal vervangen door zijn complex toegevoegde. Gebruiken we deze formules nu op een voorbeeld:

De stelling van Napoleon luidt dat als aan de zijden van een willekeurige driehoek gelijkzijdige driehoeken worden vastgemaakt, ofwel alle drie naar buiten, ofwel naar binnen gericht, dat vormen de zwaartepunten van die driehoeken  een gelijkzijdige driehoek.

  • We veronderstellen alle driehoeken klok georiënteerd.
  • Elke gelijkzijdige driehoek is gelijkvormig met de driehoek gevormd door de complexe getallen 1,\omega en \omega^2 . Hierbij is \omega=\frac{-1+\sqrt{3}i}{2}.
  • Als ABC gelijkzijdig is dan moet

        \[a+b\omega+c\omega^2=0\]

    Dit volgt uit vorige opmerking.

  • Dus is :

        \[\begin{array}{c} c+x\omega+b\omega^2=0\\b+z\omega+a\omega^2=0\\a+y\omega+c\omega^2=0\end{array}\]

  • Door de tweede vergelijking te vermenigvuldigen met \omega en de derde met \omega^2 vinden we:

        \[\begin{array}{c} c+x\omega+b\omega^2=0\\a+b\omega+z\omega^2=0\\y+c\omega+a\omega^2=0\end{array}\]

  • Omdat M,L en N zwaartepunten zijn geldt: m=\frac{a+c+y}{3},l=\frac{c+x+b}{3} en n=\frac{a+b+z}{3}.
  • Rest ons te bewijzen dat MLN gelijkzijdig is, daartoe moeten we bewijzen dat m+l\omega+n\omega^2=0. Een combinatie van de twee laatste puntjes geeft ons het gewenste resultaat.

Bewijs zonder woorden

We maken gebruik van volgende stellingen:

  • De sinusregel die zegt dat sin x = 2R .a waarbij a de zijde is tegenover hoek x en waarbij R de straal is van de omgeschreven cirkel. Zo bepalen we in de tekening de zijden met lengte sin x, sin y en
    p = sin (x + y).
  • Een omtrekshoek op een halve cirkel is recht. In combinatie met vorig punt vinden we zo de zijden met lengte cos x en cos y.
  • In een koordenvierhoek is de som van de producten van de overstaande zijden gelijk aan het product van de diagonalen. Zo vinden we een uitdrukking voor p.

De ongelijkheid van Euler

Eén van de oudste ongelijkheden in een driehoek is de ongelijkheid van Euler die een verband geeft tussen de stralen van de omgeschreven en ingeschreven cirkel.

Als O het middelpunt is van de omgeschreven cirkel ( met straal R) van driehoek ABC en I het middelpunt van de ingeschreven cirkel (met straal r), noteer dan d=|OI|. Dan geldt er:

    \[d^2=R^2-2Rr\]

Hieruit volgt dan dat

    \[R\geq 2r\]

Het gelijkheidsteken geldt enkel als de driehoek gelijkzijdig is.