Veralgemeen

Het lijkt paradoxaal, maar soms kan een probleem vereenvoudigd en dus meer handelbaar en verstaanbaar gemaakt worden door het te  veralgemenen. Een meer algemenere formulering opent soms bredere perspectieven, laat de niet essentiële zaken weg en voorziet ons soms van een nieuw arsenaal van technieken.

Wat is het grootst:

    \[\sqrt[3]{60} \text{ of } 2+\sqrt[3]{7}\]

  • De derde macht nemen van beide getallen lijkt erg ingewikkeld te worden.
  • Probeer het meer algemeen probleem op te lossen: Wat is het grootst: A=\sqrt[3]{4(x+y)} of B=\sqrt[3]{x}+\sqrt[3]{y} ? Hierbij zijn x en y positief. De opgave is dan het speciaal geval met x=8 en y=7.
  • Stel x=a^3 en y=b^3. Dan is B^3=(a+b)^3=a^3+3a^2b+3ab^2+b^3. Verder is A^3=4(a^3+b^3).
  • Nu is A^3-B^3=3(a^3+b^3-a^2b-ab^2)=(a-b)(a^2-b^2)=(a-b)^2(a+b). Omdat x en y positief zijn, zijn ook a en b positief en is A^3-B^3 >0. Hieruit volgt dat A^3 > B^3 en dus ook dat A>B.
  • We besluiten dat \sqrt[3]{60} groter is dan 2+\sqrt[3]{7}.

					

Verdeel in verschillende gevallen

Soms kan het probleem  verdeeld worden in een aantal deelproblemen , die elk afzonderlijk kunnen behandeld worden. Dit gebeurt dikwijls als het probleem de al-kwantor bevat: voor alle x … Deze methode wordt ook wel het uitputtingsprincipe genoemd of de exhaustie methode.

Gegeven is een functie f:\mathbb{Q} \longrightarrow \mathbb{R}  met 

    \[\forall x,y \in \mathbb{Q}: f(x+y)=f(x)+f(y)\]

Bewijs dat \forall x\in \mathbb{Q}: f(x)=f(1).x.

  • We gaan het resultaat eerst bewijzen voor de positieve gehele getallen. De eigenschap klopt voor x = 1.
    Voor x = 2 hebben we f(2)=f(1+1)=f(1)+f(1)=2.f(1).
    Voor x = 3 is f(3)=f(2+1)=f(2)+f(1)=2.f(1)+f(1)=3.f(1).
    Het is duidelijk dat we dit proces kunnen verderzetten en dat voor elk positief geheel getal n geldt dat f(n)=n.f(1)
  • Nu controleren we de formule voor niet positieve gehelen. Eerst is er f(0)=f(0+0)=f(0)+f(0). Hieruit volgt dat f(0)=0=0.f(1). Neem nu het negatief getal m, dan is er een positief geheel getal n met m=-n. Bijgevolg is 0=f(0)=f(n+(-n))=f(n)+f(-n).
    Hieruit volgt dat f(m)= f(-n)=-f(n)=-n.f(1)=m.f(1), waarmee het gestelde bewezen is.
  • Nu komen de omgekeerden van de gehele getallen (verschillend van 0) aan de beurt. Stel m=\dfrac{1}{n}, dan geldt:
    f(1)=f(\dfrac{1}{n}+\dfrac{1}{n}+\cdots+\dfrac{1}{n})=n.f(\dfrac{1}{n}).
    Hieruit volgt dat f(\dfrac{1}{n})=\dfrac{1}{n}.f(1) of f(m)=m.f(1).
  • Tenslotte nemen we de rationale getallen onder de loep: x=\dfrac{m}{n}.
    Nu is f(\dfrac{m}{n})=f(\dfrac{1}{n}+\dfrac{1}{n}+\cdots+\dfrac{1}{n})=m.f(\dfrac{1}{n}).
    Dus is f(\dfrac{m}{n})=m.f(\dfrac{1}{n})=\dfrac{m}{n}.f(1).
    Bijgevolg geldt voor elk rationaal getal x=\dfrac{m}{n} dat f(x)=x.f(1).

Maak een tekening

Soms kan het een grote hulp zijn de gegevens van het probleem te visualiseren. We denken dan uiteraard aan een meetkundig probleem waar een tekening ons kan helpen tot een oplossing te komen. Maar je kan ook werken met een Venndiagram, een boomschema of met grafen om je gedachten te ordenen.

Neem een driehoek ABC met hoeken \alpha,\beta en \gamma. Bewijs dan:

    \[\dfrac{\sin \alpha+\sin \beta}{2}\leq \sin \dfrac{\alpha+\beta}{2}\]

  • Je kan proberen de ongelijkheid te bewijzen via een tekenschema. Nuttig hierbij zullen waarschijnlijk de formules van Simpson zijn.
  • Maar bekijken we eens de grafiek van de sinusfunctie. Veronderstel \alpha \leq \beta \leq \gamma. De hoeken zijn uiteraard allen kleiner dan 180^\circ.
  • A(\alpha,\sin \alpha) en B(\beta,\sin \beta). C is het midden van het lijnstuk [A,B].
  • Het linkerlid van de gegeven ongelijkheid is de hoogte van het punt C en het rechterlid de hoogte van het punt D. Door de bolle vorm van de grafiek van de sinusoïde in [0,\pi] is de ongelijkheid duidelijk.
    
    
 

					

Recursie

Een rij van getallen kan je geven met behulp van een recursief  voorschrift zoals bijvoorbeeld : a_1=1 en a_n= 2a_{n-1}+1. Soms kan je uit dit recursief voorschrift een expliciete formule afleiden voor de algemene term van de rij. Soms kan dat niet, maar is het mogelijk, via recursie, de parameters te herleiden tot waarden waarvoor je het probleem wel kan oplossen.

Een eerlijk muntstuk wordt n keer opgeworpen. Wat is de kans op twee opeenvolgende keren kop ergens in de rij worpen?

  • Noteer met P_n de kans dat er nergens twee keer kop na elkaar voorkomt is de rij van n worpen.
  • Het is duidelijk dat P_1=1 en P_2=\frac{3}{4}.
  • Stel n>2. Dan zijn er twee mogelijkheden naargelang de eerste worp kop of munt is.
  • Als je eerst munt gooit, dan is de kans dat je nergens twee keer kop na elkaar hebt in de volgende n-1 worpen gelijk aan P_{n-1}.
  • Gooi je eerst kop, dan moet de tweede worp munt zijn, want anders zou je twee keer kop na elkaar hebben. De kans dat je nergens twee keer kop na elkaar hebt in de volgende n-2 worpen gelijk aan P_{n-2}.
  • Uit de vorige twee punten vinden we tenslotte dat

        \[P_n=\frac{1}{2}P_{n-1}+\frac{1}{4}P_{n-2}\]

  • Dit kan je herleiden tot 2^nP_n=2^{n-1}}P_{n-1}+2^{n-2}P_{n-2}. Of via S_n=2^nP_n:

        \[S_n=S_{n-1}+S_{n-2}\]

  • Dit is de rij van Fibonacci, waarbij S_n het n+2 de getal in de rij van Fibonacci is. Dus S_n=F_{n+2}. De gezochte kans op twee opeenvolgende keren kop ergens in de rij van n worpen, met n>2 is dan X=1-P_n=1-\frac{F_{n+2}}{2^n}.

Pariteit

Het feit dat een gegeven even of oneven is kan belangrijk zijn om de oplossing van het probleem te vinden. Het even of oneven zijn van een getal noemen we de pariteit  van het getal. Deze heuristiek wordt dikwijls gebruikt in combinatie met kleuringen of het invariantie principe.

Neem 2017 punten op een cirkel en verbind ze tot ze een 2017-hoek vormen. Elke zijde van deze 2017-hoek krijgt een ‘lading’: +1 of -1. Bewijs dat er altijd een hoekpunt moet zijn, zodat het product van de ladingen van de zijden die samenkomen in dat punt, gelijk is aan +1.

  • Neem een willekeurige zijde en geef die lading +1. Dit kan, want als alle ladingen -1 zouden zijn is het gestelde zeker al bewezen. Het rechtse eindpunt van de zijde noemen we H_1.
  • Ga rechtsom en neem de volgende zijde. Is de lading +1 dan is H_1 een hoekpunt dat aan de voorwaarde voldoet. Dus veronderstel dat de lading -1 is.
  • Je gaat zo steeds verder. Ofwel vindt je twee maal na elkaar eenzelfde lading, en dan is de stelling bewezen. Ofwel alterneren de ladingen +1 en -1 elkaar. Omdat 2017 oneven is zal de laatste zijde lading +1 hebben en is de stelling ook dan bewezen.
  • Je kan het probleem ook oplossen door P_i te definiëren als het product van de ladingen die in hoekpunt H_i samenkomen. Het product van alle P_i’s moet +1 zijn, omdat alle zijden twee keer geteld worden in dit product. Omdat we een oneven aantal hoekpunten hebben kunnen niet alle P_i’s gelijk zijn aan -1. Er is dus minstens één hoekpunt, zodat het product van de ladingen van de zijden die samenkomen in dat punt, gelijk is aan +1.