Nootje 7

Zoek de maximale waarde van b in P(x)=ax^2+bx+c, als a,b en c reële getallen zijn en |P(x)|\leq 1 voor -1 \leq x\leq 1. Geef ook een veelterm die deze maximale waarde van b bereikt.

Antwoord Klik hier

Opgave 23

Hoeveel kwadraten komen er voor in de eerste duizend termen van de rij x_n=9n+7?

Antwoord Klik hier

Opgave 20

AB is een koorde en P een willekeurig punt van een gegeven cirkel. Q is de loodrechte projectie van P op AB en R en S zijn de loodrechte projecties van P op de raaklijnen aan de cirkel in A en B. Bewijs dat PQ het meetkundig gemiddelde is van PR en PS.

 

 

Antwoord Klik hier

Opgave 18

n \in \mathbb{N}_0 is p-veilig ( met p een natuurlijk getal verschillend van 0), als het in absolute waarde meer dan 2 verschilt van alle p-vouden. Hoeveel natuurlijke getallen bestaan er die kleiner zijn dan 10000 en tegelijkertijd 7- veilig, 11-veilig en 13-veilig zijn?

 

Antwoord Klik hier

Opgave 17

Er bestaat een punt P binnen een gelijkzijdige driehoek ABC zodat |PA|= 3, |PB|=4 en |PC|=5. Bereken de lengte van de zijde van die gelijkzijdige driehoek.

Antwoord Klik hier