Nootje 7

Zoek de maximale waarde van b in P(x)=ax^2+bx+c, als a,b en c reële getallen zijn en |P(x)|\leq 1 voor -1 \leq x\leq 1. Geef ook een veelterm die deze maximale waarde van b bereikt.

Antwoord Klik hier

Opgave 27

Uit {1,2,…,n} worden 4 opeenvolgende even getallen verwijderd. De overgebleven getallen hebben een gemiddelde van 51+ 9/16. Bepaal alle viertallen opeenvolgende even getallen die hieraan voldoen.
Antwoord Klik hier

Geschiedenis van 0

Wat zou de wereld zijn zonder het getal 0? Wat was dan de uitkomst van de bewerking 5 – 5? En hoe hadden we dan onderscheid gemaakt tussen één, tien, honderd en duizend? Zouden er dan computers en internet zijn? Alle digitale gegevens worden immers opgebouwd uit eentjes en nulletjes.

Een soort nul  werd al toegepast door de Babyloniërs rond 450 v.Chr. Zij duidden een lege plaats in een rij met cijfers aan met twee wiggen. Het getal nul kenden ze echter niet.  Ook de Maya’s hadden de nul ontdekt, vanuit de vrees dat er ooit een einde zou komen aan de tijd. De Egyptenaren, Grieken en Romeinen gingen aan het cijfer voorbij, met als gevolg dat de christelijke tijdskalender niet zoiets heeft als het jaar nul. Wij beginnen immers met het jaar 1 (volgend op 1 voor Christus).

De oudst bekende tekst die een decimaal positiestelsel gebruikte, inclusief de nul, is een tekst uit India genaamd Lokavibhaaga, uit 458 n.Chr. Het eerst bekende gebruik van een speciale teken voor decimale cijfers met in de grond het uiterlijk van het moderne cijfer, een kleine cirkel, is te vinden op een stenen inscriptie gevonden bij de Chaturbhujatempel in Gwalior in India, daterend uit het jaar 876. 

Door het gebruik van de Arabisch-Indische cijfers werd het plotseling mogelijk om hele grote getallen op te schrijven. Met de Romeinse cijfers kon dat niet: om van één naar duizend te tellen waren al zeven tekens nodig en bij hogere getallen nog meer. In het Arabisch-Indische maximaal tien. Toch was Europa het getal nooit gaan gebruiken als het aan de Romeinen had gelegen. De Romeinse keizers wilden namelijk vasthouden aan hun eigen cijfers. Zij boden daarom fel weerstand tegen het cijfersysteem dat overwaaide uit het Midden-Oosten. Dat de 0 toch in Europa belandde, is te danken aan de Moren. Zij veroverden in de achtste eeuw na christus grote delen van het huidige Spanje en Portugal en brachten de Arabisch-Indische cijfers (0 tot 9) met zich mee. Verschillende wetenschappers, onder wie de Italiaan Fibonacci in de twaalfde eeuw, droegen vervolgens bij aan de populariteit van het cijfersysteem. 

 

Oekrainse Wiskunde Olympiade

De eerst wiskunde olympiade werd gehouden in 1951, toen Ukraine nog deel uitmaakte van de Sovjet-Unie. Nu wordt de finale gehouden in de vroege lente voor studenten van de 8 ste graad (13-14 jaar) tot de 11de graad (16-17 jaar). De competitie duurt twee dagen en de 8ste graads studenten krijgen 6 vragen, al de anderen krijgen 8 vragen. Voorbeeld vragen vind je op de website van AOPS of Imo compendium

Opgave 23

Hoeveel kwadraten komen er voor in de eerste duizend termen van de rij x_n=9n+7?

Antwoord Klik hier