Corona virus


Hierboven zie de evolutie van het aantal besmettingen aan het Corona virus in China ( in het blauw); je herkent hierin de typische S-vorm van de logistische functie  met voorschrift

    \[f(x)=\frac{L}{1+e^{-k(x-a)}}\]

Deze functie werd ontdekt door de Belgische wiskundige Pierre-François Verhulst(1804-1849). Het beschrijft het verloop van de omvang N(t) van een populatie in functie van de tijd, als de verandering van de populatie-omvang zowel evenredig is met de huidige omvang N(t) van de populatie als met een bepaalde “groeiruimte”. In het begin stijgt de populatie-omvang langzaam, omdat het aantal individuen nog laag is. Aan het eind  stijgt de populatie-omvang ook nog maar langzaam en nadert asymptotisch naar een bepaalde limiet; Als de populatiegrootte de helft van het maximum bereikt heeft, is de stijging het grootst: daar heeft de exponentiële groei de overhand.

Hoger Lager

Men neemt de 10 speelkaarten van de aas tot en met de tien van een bepaalde kleur. De speler zet een bepaald bedrag in. Daarna worden de kaarten geschud en de speler legt ze één na één met de beeldzijde op tafel. Telkens als de neergelegde kaart een hogere waarde heeft dan alle voorgaande kaarten, wint de speler een vast bedrag. Bereken de kans op winst bij de k-de kaart en wat is de gemiddelde winst per spel?

Veronderstel dat het spel gespeeld wordt met zelfgemaakte kaartjes die genummerd zijn van 1 to en met n. De kans op succes met het k-de kaartje noteren we met p_k.

Om deze kans te berekenen, zoeken we eerst het aantal manieren waarop de eerste k kaarten kunnen worden neergelegd. Dit is gelijk aanzet aantal k-variaties van n , genoteerd met V(n,k). We weten dat

    \[V(n,k)=\dfrac{n!}{(n-k)!}\]

Daarna berekenen we het aantal mogelijkheden waarbij de k-de kaart succes geeft. Dit hangt af van de waarde w_k van de k-de kaart. Immers:

  • Als w_k<k, dan is het onmogelijk dat de k-de kaart hoger is dan alle vorige kaarten.
  • Als w_k=k, dan win je als de vorige k-1 kaarten de nummers 1 tot en met k-1 zijn. Zo zijn er (k-1)! mogelijkheden.
  • Als w_k=k+1, dan heb je succes als de vorige k-1 kaarten een nummer hebben van 1 tot en met k. Hiervan zijn er V(k,k-1) mogelijkheden.
  • We kunnen zo verder werken en vinden dat als w_k=n er V(n-1,k-1) winstmogelijkheden zijn.

Het totaal aantal gunstige mogelijkheden is dan V(k-1,k-1)+V(k,k-1)+...+V(n-1,k-1). Via inductie kan men aantonen dat deze som gelijk is aan

    \[\dfrac{n!}{k(n-k)!}\]

Het is tenslotte niet moeilijk om de kans op succes met de k-de kaart uit te rekenen. Gebruik makend van de formule van Laplace vinden we

    \[p_k=\dfrac{1}{k}\]

We merken onmiddellijk op dat dit resultaat totaal niet afhangt van het aantal kaarten waarmee het spel gespeeld wordt. Stel nu even dat je bij winst bij de k-de kaart telkens een bedrag b krijgt.  Als X de winst is per spelletje  met n kaarten, dan is de gemiddelde winst gegeven door

    \[E(X)=\sum_{k=1}^{k=n}b.\dfrac{1}{k}\]

Bij een uitkering van 5 Euro per gewonnen kaart, vind je :

n=5   E(X)=11,4
n=10   E(X)=11,6
n=15   E(X)=16,6
n=20   E(X)=18

 

 

Nootje 7

Zoek de maximale waarde van b in P(x)=ax^2+bx+c, als a,b en c reële getallen zijn en |P(x)|\leq 1 voor -1 \leq x\leq 1. Geef ook een veelterm die deze maximale waarde van b bereikt.

Antwoord Klik hier

Opgave 27

Uit {1,2,…,n} worden 4 opeenvolgende even getallen verwijderd. De overgebleven getallen hebben een gemiddelde van 51+ 9/16. Bepaal alle viertallen opeenvolgende even getallen die hieraan voldoen.
Antwoord Klik hier

Geschiedenis van 0

Wat zou de wereld zijn zonder het getal 0? Wat was dan de uitkomst van de bewerking 5 – 5? En hoe hadden we dan onderscheid gemaakt tussen één, tien, honderd en duizend? Zouden er dan computers en internet zijn? Alle digitale gegevens worden immers opgebouwd uit eentjes en nulletjes.

Een soort nul  werd al toegepast door de Babyloniërs rond 450 v.Chr. Zij duidden een lege plaats in een rij met cijfers aan met twee wiggen. Het getal nul kenden ze echter niet.  Ook de Maya’s hadden de nul ontdekt, vanuit de vrees dat er ooit een einde zou komen aan de tijd. De Egyptenaren, Grieken en Romeinen gingen aan het cijfer voorbij, met als gevolg dat de christelijke tijdskalender niet zoiets heeft als het jaar nul. Wij beginnen immers met het jaar 1 (volgend op 1 voor Christus).

De oudst bekende tekst die een decimaal positiestelsel gebruikte, inclusief de nul, is een tekst uit India genaamd Lokavibhaaga, uit 458 n.Chr. Het eerst bekende gebruik van een speciale teken voor decimale cijfers met in de grond het uiterlijk van het moderne cijfer, een kleine cirkel, is te vinden op een stenen inscriptie gevonden bij de Chaturbhujatempel in Gwalior in India, daterend uit het jaar 876. 

Door het gebruik van de Arabisch-Indische cijfers werd het plotseling mogelijk om hele grote getallen op te schrijven. Met de Romeinse cijfers kon dat niet: om van één naar duizend te tellen waren al zeven tekens nodig en bij hogere getallen nog meer. In het Arabisch-Indische maximaal tien. Toch was Europa het getal nooit gaan gebruiken als het aan de Romeinen had gelegen. De Romeinse keizers wilden namelijk vasthouden aan hun eigen cijfers. Zij boden daarom fel weerstand tegen het cijfersysteem dat overwaaide uit het Midden-Oosten. Dat de 0 toch in Europa belandde, is te danken aan de Moren. Zij veroverden in de achtste eeuw na christus grote delen van het huidige Spanje en Portugal en brachten de Arabisch-Indische cijfers (0 tot 9) met zich mee. Verschillende wetenschappers, onder wie de Italiaan Fibonacci in de twaalfde eeuw, droegen vervolgens bij aan de populariteit van het cijfersysteem.