Niet-Euclidische meetkunde

 

De meetkunde, die we dagelijks gebruiken, wordt Euclidische meetkunde genoemd, ter ere van Euclides, die tussen 330 en 320 voor Christus een aantal boeken, genaamd „Elementen” geschreven heeft.

Hierin wordt  de meetkunde opgebouwd met stellingen vertrekkend van een vijftal postulaten of axioma’s: 
1. Door 2 verschillende punten gaat juist 1 rechte.
2. Een lijnstuk kan naar beide kanten onbeperkt worden
    verlengd.
3. Er kan met elk middelpunt en elke straal een cirkel
    getrokken worden.
4. Alle rechte hoeken zijn gelijk.
5. Door een punt P buiten een rechte , gaat precies één rechte
    die evenwijdig loopt met  de eerste rechte.

Dit laatste axioma staat bekend als het parallellenpostulaat.
Eeuwen heeft men gedacht dat men dit postulaat kon bewijzen aan de hand van de andere vier axioma’s. Trouwens de formulering van het parallellenpostulaat was oorspronkelijk anders.  De gegeven formulering komt van John Playfair. Deze formulering stamt uit 1795 en staat bekend als “Playfair’s axioma” . Een andere gelijkwaardige formulering van dit postulaat is dat de hoekensom van een driehoek gelijk is aan 180°.

Het duurde tot de 19 de eeuw voor het juist inzicht er kwam en wel bij 3 wiskundigen ongeveer gelijktijdig en waarschijnlijk onafhankelijk van elkaar: C.F.Gauss, J.Bolyai en I.Lobatschefsky.

Het was Joha,, Bolyai die tot het inzicht kwam dat het mogelijk was een meetkunde op te stellen, waarin door een punt buiten een rechte oneindig veel rechten gaan die de gegeven rechte niet snijden. Hij publiceerde zijn ideeën in 1832 en gaf zo gestalte aan de hyperbolische meetkunde. De som van de hoeken van een driehoek is hier minder dan 180°.  In de hyperbolische meetkunde wordt dus niet meer aan het parallellenpostulaat voldaan. 
Later werd ook de elliptische meetkunde ontdekt. Elliptische meetkunde is een niet-Euclidische meetkunde, waarbij door een punt buiten een rechte  geen andere rechten bestaat die de gegeven rechte niet snijdt.

De gewone meetkunde is dus niet de meetkunde, maar een  meetkunde. Met andere axioma’s krijgen we een ander soort meetkunde.

Fermat priemgetallen en regelmatige veelhoeken

De Franse wiskundige Pierre de Fermat( 1601-1665) dacht dat alle getallen van de vorm 2^{2^n} priemgetallen waren. En voor de eerste 5 waarden van n was dat ook zo:

\begin{array}{c|c} n& 2^{2^n} \\ \hline\\ 0 &3\\1&5\\2&17\\3&257\\4&65.537\end{array}

Later ontdekte Leonard Euler( 1707-1783) in 1732 dat het Fermat getal voor n = 5 ontbonden kon worden als  4.294.967.297 = 641 x 6.700.417. En hier zou het verhaal dan stoppen, ware er niet de geniale ontdekking van Carl Friedrich Gauss(1777-1855).

In 1794 vond Gauss dat een regelmatige veelhoek met p zijden (met p een priemgetal ) construeerbaar is met passer en liniaal als en slechts als p een Fermat priemgetal is, dus een priemgetal van de vorm 2^{2^n}. Als eerbetoon werd in Brauschweig, de thuisstad van Gauss,  een bronzen standbeeld opgericht waar hij staat op een regelmatige zeventien hoek.

Welke regelmatige veelhoeken zijn dan construeerbaar met passer en liniaal? Volgens Gauss’ resultaat zijn dat de gelijkzijdige driehoek, de regelmatige 5-hoek, de regelmatige 17-hoek, de regelmatige 257-hoek en de  regelmatige 65.537-hoek. We weten dat ook de regelmatige veelhoeken met 7,11,13,19,… zijden niet construeerbaar zijn omdat het wel priemen zijn, maar geen Fermat priemen. Verder zijn ook regelmatige veelhoeken met 4,8,16,32,.. en 6,12,24,48,… zijden construeerbaar omdat we met passer en liniaal een hoek in twee kunnen verdelen. En wat met de anderen? Is een regelmatige 15 hoek construeerbaar?  Het blijkt van wel, omdat \frac{1}{15}=\frac{2}{5}-\frac{1}{3} en dus kunnen we een cirkel in 15 gelijke delen verdelen.

Het was uiteindelijk Pierre Wantzel die in 1837 volgend algemeen reultaat bewees: Een regelmatige n-hoek is construeerbaar met passer en liniaal als en slechts als n het product is van een macht van 2 en een willekeurig aantal verschillende Fermat priemgetallen.

Modulorekenen

De eindige rekenkunde, ook wel modulaire rekenkunde genoemd, wordt beschreven in het boek Disquisitiones Arithmeticae van Gauss, een buitengewoon invloedrijk werk uit 1801, toen de auteur nog maar vierentwintig jaar oud was.

dis

Stel a,b,m \in \mathbb{Z},m>1. Indien a en b bij deling door m dezelfde rest geven, d.w.z. indien a-b=cm voor zekere c \in \mathbb{Z}, heten a en b congruent modulo m. We noteren a\equiv b mod m.Zo is bijvoorbeeld  3\equiv 63 mod 5, 7\equiv -1 mod 8 en 12^2\equiv 1 mod 13.

Enkele eigenschappen :

  • Als a\equiv b mod m en b\equiv c mod m, dan is a\equiv c mod m.
  • Als a\equiv b mod m en c\equiv d mod m, dan is a+c\equiv b+d mod m.
  • Als a\equiv b mod m en n \in \mathbb{N}, dan is a^n\equiv b^n mod m.
  • Als a\equiv b mod m dan is voor elke c \in \mathbb{Z} : ac\equiv bc mod m.
  • Als a\equiv b mod m en c\equiv d mod m, dan is ac\equiv bd mod m.

Rekenen met congruenties lijkt erg op het rekenen met vergelijkingen. Er is echter een belangrijk verschil: uit ac\equiv bc mod m met c\neq 0 mod m hoeft niet te volgen dat a\equiv b mod m. Zo is 6.12\equiv 6.7 mod 10 maar 12 is niet congruent met 7 modulo 10. In andere gevallen gaat het wel op. De voorwaarde waarop de vereenvoudiging met c wel kan, is dat c onderling ondeelbaar is met m.
Dus als ac\equiv bc mod m en ggd(c,m) = 1, dan is a\equiv b mod m.
Als ggd(c,m) = d, dan volgt uit ac\equiv bc mod m dat a\equiv b mod( \frac{m}{d}).

Rekent men modulo m, dan zijn er m verschillende soorten getallen, al naar gelang ze verschillende resten geven bij deling door m. De verzameling van alle gehele getallen die eenzelfde rest geven heet een restklasse modulo m. Er zijn dus precies m verschillende restklassen modulo m. De restklasse die een getal a bevat, noteert men als \overline{a}. Deze notatie is natuurlijk niet eenduidig bepaald, want als a\equiv b mod m, stellen \overline{a} en \overline{b} dezelfde restklasse modulo m voor en omgekeerd.

Werken we modulo 4 dan is \overline{0}=\left\{0,4,8,12,\cdots}\right\}, \overline{1}=\left\{1,5,9,13,\cdots\right\}, \overline{2}=\left\{2,6,10,14,\cdots\right\}, \overline{3}=\left\{3,7,11,15,\cdots\right\} .

Men kan in de verzameling restklassen modulo m, genoteerd door \mathbb{Z}_m, een optelling en een vermenigvuldiging defini\”eren via \overline{a}+\overline{b}=\overline{a+b} en \overline{a}.\overline{b}=\overline{ab}. Deze rekenregels lijken erg op de regels van optelling en vermenigvuldiging van gehele getallen.

Eigenschappen :

  • \forall \overline{a},\overline{b}\in \mathbb{Z}_m : \overline{a}+\overline{b}=\overline{b}+\overline{a}.
  • \forall \overline{a},\overline{b}\in \mathbb{Z}_m : \overline{a}.\overline{b}=\overline{b}.\overline{a}.
  • \forall \overline{a},\overline{b},\overline{c}\in \mathbb{Z}_m : (\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c}).
  • \forall \overline{a},\overline{b},\overline{c}\in \mathbb{Z}_m : (\overline{a}.\overline{b}).\overline{c}=\overline{a}.(\overline{b}.\overline{c}).
  • \forall \overline{a},\overline{b},\overline{c}\in \mathbb{Z}_m : \overline{a}.(\overline{b}+\overline{c})=\overline{a}.\overline{b}+\overline{a}.\overline{c}.
  • \forall \overline{a}\in \mathbb{Z}_m : \overline{a}+\overline{0}=\overline{a}.
  • \forall \overline{a}\in \mathbb{Z}_m : \overline{a}.\overline{1}=\overline{a}.
  • Er is een unieke restklasse \overline{x} met \overline{a}+\overline{x}=\overline{0}, namelijk \overline{x}=\overline{-a}.

Veronderstel dat  we de rest willen bepalen van 73\times52 bij deling door 7. Omdat 73 \equiv 3 mod 7 en 52 \equiv 3 mod 7, moet 73\times52 \equiv 3\times 3 mod 7 \equiv 9 mod 7 \equiv 2 mod 7. Dus de rest bij deling van 73\times52 door 7 is 2. We moeten daarvoor het product niet uitrekenen.

Veeltermen die priemgetallen uitspuwen

Neem de veelterm 2x^2+29, en bereken de getalwaarde voor alle natuurlijke getallen tot en met 28. Je krijgt de volgende rij van getallen : 29,31,37,47,…,1597. Dit zijn allemaal priemgetallen. Vullen we 29 in dan krijgen we natuurlijk een getal dat deelbaar is door 29 en dus niet priem is.

De veelterm x^2+x+17, ingevuld voor alle natuurlijke getallen tot en met 15, geeft ook allemaal priemgetallen. De bekendste veelterm is zeker deze van Euler: x^2-x+41 die voor alle natuurlijke getallen tot en met 40 priemgetallen geeft. Nog beter doet de veelterm x^2-79x+1601 die voor alle natuurlijke getallen tot en met 79 priemgetallen uitspuwt.

 

euler

Het is wel duidelijk dat er geen niet-constante veelterm bestaat die alle priemgetallen voortbrengt. Dit kan je zelfs bewijzen:
Stel dat A(x) een niet-constante veelterm is die voor elk natuurlijk getal een priemgetal voortbrengt. Neem a \in \mathbb{N} dan is A(a)=p met p een priemgetal. Maar dan is A(a+p)\equiv 0 \text{ mod } p en omdat ook A(a+p) een priemgetal moet zijn is A(a+p)=p. We kunnen dit herhalen voor de natuurlijke getallen a+kp en vinden dat \forall k \in \mathbb{N}: A(a+kp)=p. Bijgevolg heeft de veelterm A(x)-p oneindig veel nulwaarden en is die veelterm dus constant, wat tegen het gegeven is. Er bestaat dus geen niet-constante veelterm die alleen maar priemgetallen voortbrengt.